Mate2000 (Editura Paralela 45) si concursul COMPER


 Update 7 mai 2011: Conform Regulamentului, la Etapa a II-a a Concursului Şcolar Naţional COMPER se pot înscrie şi elevi care nu au participat la prima etapă. De asemenea, organizatorul are rugămintea ca grilele de punctaj să fie printate de pe site-ul concursului, cu respectarea strictă a specificaţiilor. Data limită de înscriere pentru etapa a doua este 15 mai 2011, probele urmând a se desfăşura pe 18 mai, la Limba şi literatura română, şi 25 mai la Matematică. Elevii pot participa numai sub coordonarea unui cadru didactic.

Succes tuturor participanţilor!


 12 ianuarie 2011:
Mate2000. Editura Paralela 45 De azi într-o săptămână avem emoţii, căci se desfăşoară proba la matematică în cadrul concursurilor naţionale COMPER. Cum am ajuns noi să participăm? Simplu… de la începutul anului ne-am cumpărat, toată clasa, culegerea pentru matematică. Ca o paranteză, până să ajungem la şcoală, tot auzeam şcolarii vorbind de culegeri, şi mă cam îngrozea ideea. Când eram noi şcolari, culegerile erau ceva high-level, să ajungi să ai temă de-acolo era SF, doar la cercul de matematică se deschidea culegerea cu "Roboţel". Am ajuns la şcoală şi am constatat că acum nu mai e o sperietoare, e un fel de revistă cu jocuri adaptată programei. Ok, hai că e exagerat cu revistă, dar e amuzant să lucrezi pe ea. Nu mai simţi că dai piept cu uraganul, doar exersezi ceea ce ai învăţat, pentru o mai bună fixare a cunoştinţelor.

Cam asta facem noi de la începutul anului cu Mate2000. Ce mi-a plăcut a fost în primul rând ideea de a oferi copiilor, pe lângă culegere, şi o probă de concurs. Culegerea reprezită "biletul" de participare, căci la sfârşit este inserată fişa de concurs pentru fiecare elev. Şi, dacă punem la socoteală celelalte concursuri, la care plăteşti pentru participare cam aceeaşi sumă, dar nu primeşti nimic în plus, cred că alegerea nu e rea deloc. Există variante pentru toţi anii de studiu, primar şi gimnazial, pentru română şi matematică.

Aseară ne-am jucat un pic cu testele pentru proba de limba română, care se desfăşoară astăzi. Pe site îţi poţi face cont de elev, şi ai acces atât la testul de antrenament (poate nu era o idee era să fie mai multe…) cât şi la cele 5 variante pentru concurs, care se afişează cu o zi înainte. Personal nu îmi plac testele anunţate. Ok, anunţi modelul de subiect, dar subiectul efectiv… să nu mă întrebaţi ce părere am despre examenul de bac, când ştii dinainte ce poate fi scris pe bilete. Roboţei creăm, de roboţei avem parte…

Am avut şi ceva bătaie de cap cu testele, în primul rând pentru că noi nu am ajuns la litera "L". Cred că abia vineri îl vor învăţa. Apoi, nici structura unui text, cu ce este acela "titlu", nu am studiat, urmează. I-am explicat pe loc, şi a înţeles ce-i de făcut.

Am hotărât ca la proba de matematică să nu-i arăt subiectele înainte. Asta e, nu avem nimic de pierdut, şi nici de câştigat. Vreau să văd ce poate face cu un test la prima vedere. Vom avea apoi timp suficient să rezolvăm toate variantele propuse.

Îi ţinem pumnii doamnei învăţătoare, să aibă net, să meargă xeroxul, pentru că participarea este posibilă numai cu ajutorul dânsei. Ca elev independent, sau ca părinte, nu poţi participa. Ştiu că o diplomă de mentor nu va răsplăti efortul depus, aşa că sper ca satisfacţiile să vină din succesele copiilor. Multă baftă, clasa IB!

Legături utile: Culegerea Mate 2000, Concursurile COMPER , Regulamentul de participare.


Rezolvarea problemelor de matematica prin metoda reducerii la unitate

Prin această metodă se rezolvă multe probleme de matematică, în care datele depind unele de altele.
Pentru cei pasionaţi de matematică, aici se încadrează problemele în care apar mărimi direct proporţionale şi invers proportionale, care se rezolvă prin procedeul proporţiilor şi prin procedeul reducerii la unitate folosit în clasa a IV-a. Voi exemplifica prin rezolvarea câtorva probleme. Se numeşte metoda reducerii la unitate deoarece, întotdeauna, se află cât valoreaza unitatea.

Problema 1. O persoană cumpără 5 kg de mere şi plăteşte 15 lei. Dacă va cumpăra 7 kg de mere de aceeaşi calitate, cât va plăti?
Rezolvare. Dacă 5 kg de mere valoreaza 15 lei, atunci 1 kg va costa de 5 ori mai puţin,
adica 15 lei : 5 = 3 lei. 7 kg de mere vor costa de 7 ori mai mult, adică 3 lei x 7 = 21 lei.

Calculele se pot aseza astfel:
5 kg ………………………………..15 lei
1 kg…………………….15 lei : 5 = 3 lei
7 kg…………………….3 lei x 7 = 21 lei

Problema 2. Un bazin se umple prin 3 robinete în 15 ore. În cât timp vor umple acelaşi bazin 9 robinete care au acelasi debit?
Rezolvare. Dacă bazinul se umple folosind 3 robinete în 15 ore, un singur robinet o va face într-un timp de 3 ori mai mare, adică 15 ore x 3 = 45 ore. Cele 9 robinete vor umple bazinul într-un timp de 9 ori mai mic, adică 45 ore : 9 = 5 ore.

Calculele se pot aseza astfel:
3 robinete……………………………………………15 ore
1 robinet…………………………..15 ore x 3= 45 ore
 9 robinete………………………….45 ore : 9=   5 ore

Pentru cei ce cunosc operaţii cu fracţii, voi rezolva o problema la nivelul clasei a VI-a, tot prin metoda reducerii la unitate.

Problema 3. Pentru a ara 810 ha de teren arabil, 6 tractoare au lucrat 45 de zile. Dacă ar trebui să arăm 2100 ha şi dispunem de 10 tractoare, cât timp le va fi necesar? (Presupunem că tractoarele îndeplinesc aceeaşi normă).

Rezolvare. În acest caz, vom reduce, pe rând, la unitate, suprafaţa şi numărul de tractoare, apoi se revine, invers, la datele cerute. Dacă 810 ha au fost arate de 6 tractoare în 45 de zile, 1 ha va fi arat de 6 tractoare în 45 zile : 810.
Tot 1 ha va fi arat de 1 tractor într-un timp de 6 ori mai lung adică (45 zile : 810) x 6. 
Tot 1 ha va fi arat de 10 tractoare  mai repede, adică [(45 zile :810)x 6] : 10.
Pentru a ara 2100 ha va dura mai mult, adică {[( 45 zile : 810)x 6] :10}x 2100
şi după efectuarea calculelor obţinem 70 de zile. 

Calculele se pot aseza astfel:
810 ha…………….6 tractoare………………….45 zile
 1 ha………………6 tractoare…………………..45 zile:810
 1 ha………………1 tractor……………………..(45 zile:810)x 6
1 ha………………10 tractoare………………….[(45 zile:810)x 6]: 10
2100 ha………..10 tractoare……………..{[(45 zile:810)x 6]: 10}x 2100= 70 zile   

Vă propun spre rezolvare următoarele probleme:
1. O gospodină a cumpărat 13 kg de cartofi şi a plătit 26 de lei. Cât a plătit alta gospodină, dacă a cumparat 7 kg de cartofi de aceeaşi calitate?
2. O echipă de 50 de muncitori termină o lucrare în 30 de zile. În cât timp va termina aceeaşi lucrare o echipă de 15 muncitori? (Toţi muncitorii îndeplinesc aceeaşi normă).
3. Un fermier are 5 vaci, care timp de 30 de zile consuma 1800 kg de furaj. Cât furaj consumă 12 vaci în 18 zile, daca raţia (porţia) unei vaci pe zi rămane aceeaşi?

Postează într-un comentariu la acest articol rezolvarea, şi vei primi răspuns dacă este corectă.

 


Important!
Nu posta probleme fără a mentiona în ce clasă esti si neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au impotmolit la rezolvare.
Mesajele care contin doar cerintele problemei vor fi ignorate.


Matematica clasa 1, editura Gama

Matematica, clasa I, Editura Gama

Acum un an, când am depus cam pe vremea aceasta dosarul de înscriere în clasa întâi, nu cred că exista bau-bau mai mare decât şcoala. Toţi prietenii, acum părinţi, îmi povesteau cu jale amară cât de grea e clasa întâi. Eu am fost copilul cu FB pe linie, şcoala nu m-a speriat niciodată (excepţie fac doar unii profesori). De ce m-ar speria acum o biată clasa întâi? Doar pentru că nu mai car ghiozdanul dimineaţa în spate, şi n-o mai privesc pe doamna de parcă ar fi Dumnezeu? (Banuiesc că nu trebuie să reamintesc, ce spune doamna e sfânt!)

Aşadar, am păşit în clasa întâi, cu emoţie şi cu spaimă. Am trecut de primul semestru… nu a fost deloc uşor. Şi pot să spun că şcoala asta nouă (de mileniul 3) nu are deloc haz! Deşi pozele sunt multe şi colorate, foile lucioase prin manuale, copiii nu se mai distrează deloc. Caiet mic, caiet tip, manual, culegere, fişe… doamne, cum de le mai ştie ordinea şi rostul la fiecare? Apoi acasă, caiet de încercare, caiet de lucru, culegere suplimentară… muncă, muncă, muncă.

Şi nu s-a terminat. Abia învăţăm să scriem, şi limba română nu e deloc uşoară. Dacă alfabetul părea amuzant, acum, când s-au strâns mai bine de 20 de litere, apar problemele. Ai şi î şi â, regula pare simplă, dar ce te faci cu reîncerca?! E… sunt ori sânt? La dictare scrii cum se aude… e plimbare sau plinbare?! Sunete aiurite… Şi parcă nu era de ajuns, cine o fi fost deşteptul care a inventat cratima. A-ţi încercat sau aţi încercat?! Şi scriem, şi scriem, căci numai aşa le vom învăţa corect…

Nici cu matematica nu e mai uşor. Şi, dacă dictări poţi improviza, cu exerciţiile e mai greu… nu mai merge să-i dai copilului două pagini de adunări şi scăderi, ca pe "vremuri". Acum toate exerciţiile sunt ilustrate. Printre materialele cu care ne umplem timpul de lucru acasă este şi lucrarea propusă de Editura Gama, Matematică, pentru clasa întâi. Cu o grafică uşoară şi plăcută, şi un cuprins adaptat programei de la şcoală, lucrarea îşi propune să îi încurajeze pe copii să lucreze acasă. Este însoţită de un ghid pentru părinţi, care, pe lângă rezultatele exerciţiilor mai dificile, cuprinde câteva sfaturi pentru cei cu mai puţin talent pedagogic, despre cum să le explice copiilor anumite noţiuni atunci când aceştia se află în dificulate, şi nu le-au asimilat corect la orele de curs.

Matematica, clasa I, Editura Gama

Matematica, clasa I, Editura Gama

Lucrarea este recomandată şi pentru celelalte clase din ciclul primar, având ca autori pe Eduard şi Ioan Dancila.

Matematica clasa a doua, editura Gama Matematica clasa a treia, editura Gama Matematica clasa a patra, editura Gama

Info preţ | Biblioteca Năzdrăvanilor

Metode de rezolvare a problemelor de matematica: metoda falsei ipoteze

Problemele care se pot rezolva prin această metodă sunt de două tipuri. Cele de tipul unu necesită o singură ipoteză, iar cele tipul al doilea, două sau mai multe ipoteze succesive.

Metoda se numeşte a falsei ipoteze, deoarece se consideră că ipoteza nu corespunde cu adevărul.

Pentru exemplificare voi rezolva următoarea problemă:

Într-un bloc sunt apartamente cu două camere şi cu trei camere, în total 20 de apartamente şi 45 de camere. Câte apartamente au două camere şi câte au trei camere?

Rezolvarea I. Presupunem că în bloc sunt numai apartamente cu două camere şi atunci vor fi

20 x 2 camere = 40 camere.

Diferenţa de camere,

45-40= 5 camere

apare din faptul că sunt şi apartamente cu trei camere. Cele 5 camere le vom împarţi, adăugând câte una, 5:1= 5, la 5 apartamente, pentru că unele au 3 camere. Înseamnă că sunt 5 apartamente cu trei camere, iar cu două camere vor fi

20-5=15 apartamente.

Rezolvarea II. Presupunem că în bloc sunt numai apartamente cu trei camere şi atunci vor fi

20x 3 camere= 60 camere.

Diferenţa de camere,

60-45= 15 camere

apare din faptul că sunt şi apartamente cu două camere.Vom lua câte o cameră de la 15:1=15 apartamente.Vor fi 15 apartamente cu două camere, iar cu trei camere vor fi

20-15= 5 apartamente.

Rezolvaţi asemănător problemele:
1) Într-un bloc sunt apartamente cu 4 camere si cu 2 camere, în total 24 apartamente şi 68 de camere.Câte apartamente sunt de fiecare tip?
2) Într-o curte sunt găini şi iepuri, în total 33 de capete şi 106 picioare. Câte găini şi câţi iepuri sunt în curte?

Postează răspunsurile tale la acest articol şi vei afla dacă ai rezolvat corect.

Spor la lucru!


Important!
Nu posta probleme fără a menționa în ce clasă ești și neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au împotmolit la rezolvare.
Mesajele care conțin doar cerintele problemei vor fi mai mult ca sigur ignorate.


 

Rezolvarea problemelor de matematica prin metoda mersului invers

Această metodă de rezolvare a problemelor de matematică se aplică problemelor în care datele depind succesiv unele de altele. Enunţul problemei trebuie urmărit de la sfârşit către început.
În timpul rezolvării efectuăm operaţia inversă celei care apare în enunţ, ceea ce înseamnă că nu numai mersul este invers, ci şi operaţiile pe care le facem sunt inverse celor celor din enunţul problemei.
Proba se face aplicând numărului determinat operaţiile din enunţul problemei. Voi exemplifica prin rezolvarea următoarei probleme:

M-am gândit la un număr, l-am înmulţit cu 10, la rezultat am adunat 16, suma am împarţit-o la 6, iar din cât am scăzut 10, obţinând 56. Aflaţi numărul.

Rezolvare I.
Numărul din care am scăzut 10 este

56 + 10 = 66.

Numărul care împărţit la 6 dă 66 este

66×6= 396.

Numărul care adunat cu 16 dă 396 va fi

396 – 16 = 380.

Şi în sfârşit, numărul care înmulţit cu 10 dă 380 este

380 :10= 38.

Numărul căutat este 38.

Rezolvare II.

Redactarea rezolvării o puteam aranja şi astfel: notăm cu a numărul necunoscut şi obţinem:

( a x 10 + 16 ) : 6 – 10 = 56.

Calculele se ordonează astfel:

( a x 10 + 16 ) : 6 = 56 + 10
( a x 10 + 16 ) : 6 = 66
a x 10 + 16 = 66 x 6
a x 10 + 16 = 396
a x 10 = 396 – 16
a x 10 = 380
a = 380 : 10
a = 38

Proba sau verificarea rezultatului este următoarea: 38×10=380, apoi 380+16=396 şi 396:6= 66; în sfârşit, 66 -10 = 56, ceea ce corespunde enunţului.

Rezolvaţi, folosind aceeaşi metodă, problema:

Un număr se împarte la 7, din cât se scade 17, diferenţa se înmulţeşte cu 5, iar la produs se adună 15, obţinându-se astfel 20. Aflaţi numărul.


Important!
Nu posta probleme fără a mentiona în ce clasă esti si neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au impotmolit la rezolvare.
Mesajele care contin doar cerintele problemei vor fi ignorate.


Metode de rezolvare a problemelor de matematica: metoda comparatiei

În cele ce urmează voi prezenta rezolvarea unei probleme prin metoda comparaţiei sau metoda aducerii la acelaşi termen de comparaţie. În aceste probleme apar două mărimi, care pot fi comparate în acelaşi mod şi sunt caracterizate de câte două valori.

Metoda constă în a aduce una dintre mărimi la aceeaşi valoare, având apoi de aflat o singură mărime. Aşezarea datelor problemei trebuie urmărită cu stricteţe. Voi prezenta rezolvarea unei probleme prin aceasta metodă.

Se dă următoarea problemă:

 4 metri de stofă şi 3 metri de postav costă 1250 de lei, iar 2 metri de stofă şi 6 metri de postav costă 1300 de lei.
Cât costă metrul de stofă şi cât costă metrul de postav?

Datele problemei le aşezăm astfel:

4 m stofă … 3 m postav … 1250 lei  (1)
2 m stofă … 6 m postav …. 1300 lei  (2)

Rezolvarea I

Dacă luăm cantităţi duble, adică înmulţim cu 2 cantităţile celui de al doilea rând (2), preţul se dublează, şi vom scrie:

4 m stofă … 3 m postav … 1250 lei
4 m stofă ….12 m postav …2600 lei

Cum cantitatea de stofă este aceeaşi, înseamnă că diferenţa de preţ apare datorită diferenţei cantităţilor de postav, aşadar:

 12m-3m= 9 (m de postav),
care costă
2600 -1250 =1350 (lei)
Un metru de postav va costa
1350 : 9 = 150 (lei)

Vom continua astfel:

 3 metri de postav costă 3×150 = 450 (lei)

atunci

 4 metri de stofă vor costa 1250 – 450 = 800 (lei.)
Un metru de stofă va costa 800 : 4 = 200 (lei)

Răspunsul este:

 1 m stofă costă 200 lei, iar 1 m postav 150 lei.

Rezolvarea II

Dacă vom lua cantităţi duble, adică înmulţim cu 2 cantitătile primului rând (1), preţul se dublează, vom scrie:

8 m stofă … 6 m postav ….2500 lei
2 m stofă … 6 m postav …1300 lei

 Cum cantitatea de postav este aceeaşi, înseamnă că diferenţa de preţ apare datorită diferenţei cantităţilor de stofă, deci

 8 – 2 = 6 (m de stofă),
care costă
2500 -1300 = 1200 (lei)
Un metru de stofă va costa
1200 : 6 = 200 (lei)

Vom continua astfel:

 4 metri de stofă costă 4 x 200 = 800 (lei)

atunci

 3 metri de postav costă 1250 -800 = 450 (lei)
Un metru de postav va costa 450 : 3= 150 (lei)

Am obţinut aceleaşi rezultate ca mai sus, răspunsul este:

 1 m stofă costă 200 lei, iar 1 m postav 150 lei.

Observaţie: Întâmplarea a făcut ca de fiecare dată să dublăm cantităţile. Le putem înmulţi cu 3, cu 4 sau împărți etc.

Vă propun spre rezolvare, în cele două moduri, următoarea problemă:
7 metri de postav şi 5 metri de stofă costă 2050 lei, iar 3 metri de postav şi 4 metri de stofă costă 1250 lei.
Să se afle cât costă metrul de stofă şi metrul de postav.

Spor la lucru!


Important!
Nu posta probleme fără a mentiona în ce clasă esti si neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au impotmolit la rezolvare.
Mesajele care contin doar cerintele problemei vor fi ignorate.

 


 

Metode de rezolvare a problemelor de matematica: metoda figurativa

În săptămânile ce urmează voi prezenta, la nivel de clasa a IV-a, trei metode de rezolvare a problemelor de matematică: metoda figurativă (grafică), metoda comparaţiei şi metoda mersului invers.

Atunci când rezolvăm probleme de matematică trebuie să avem în vedere următoarele: întâi de toate, înţelegerea problemei şi exprimarea în limbaj matematic a relaţiilor dintre mărimile care apar în textul acesteia.

Mă refer la următoarele formulări, care dețin, de cele mai multe ori, cheia rezolvării unei probleme:

  • Expresia *cu atât mai mult* înseamnă o adunare;
  • Expresia *cu atât mai puţin* înseamnă o scădere;
  • Expresia *de atâtea ori mai mult* înseamnă o înmulţire;
  • Expresia *de atâtea ori mai puţin* înseamnă o împărţire.

Următoarele exprimări sunt folosite destul de des în culegerile matematice. Sunt însă de evitat, dat fiind faptul că un „număr” nu poate fi „mărit”, cel mult putem afla un alt număr care este „mai mare cu…” decât numărul ales. Însă ele apar, și e bine să le cunoașteți.

*măriţi cu 2 numărul X* X+2;
*micşoraţi cu 2 numărul X*, X-2;
*măriţi de 2 ori numărul A*, Ax2;
*micşoraţi de 2 ori numărul A*, A:2.

Atenţie mare așadar la exprimările ce apar în textul problemelor! Dacă întâlniți asemenea expresii, este util să notați deasupra lor semnul operației matematice pe care o indică, vor ușura rezolvarea.

 

De regulă, atunci când avem de rezolvat o problemă, încercăm mai întâi să o încadrăm într-un anumit tip, pentru care cunoaștem un algoritm de rezolvare.

Voi prezenta acum rezolvarea unei probleme prin metoda figurativă. Esenţial în rezolvarea problemelor cu această metodă este realizarea unui desen, o figură, care corespunde enunţului dat.

Problemă: Un număr este cu 3 mai mare decât altul. Să se afle numerele, ştiind că suma lor este 25.

Rezolvare(I)

Din enunţ ne dăm seama că:

  • nu cunoaştem 2 numere;
  • unul dintre ele este cu 3 mai mare;
  • suma celor 2 numere este 25.

Realizăm următorul desen:

 

Observăm că, dacă am elimina din suma numerelor 3, adică am lua din numărul mai mare 3 unităţi, cele două segmente desenate devin egale. Scopul acestei metode de rezolvare este acela de a obține pe desen un număr de părți egale, care să ne ajute apoi la identificarea necunoscutelor.

Vom scrie:

25-3=22, unde 22 reprezintă suma celor două numere, dacă al doilea ar fi egal cu primul.

Câte părți egale am obținut în desen, după ce am eliminat 3?

1+1 = 2 (părți egale)

Dacă suma a două părți egale este 22, putem afla cât reprezintă o parte egală, împărțind suma la numărul de părți egale identificate.

22: 2=11 (reprezintă o parte egală, în problema noastră aceasta reprezentând numărul mai mic.

Am aflat în acest mod numărul mai mic, celălalt poate fi aflat în două moduri. Ori adunăm unitățile îndepărtate inițial:

11+ 3= 14,

Sau scădem din sumă numărul pe care l-am aflat:

25-11=14.

În concluzie numerele sunt 11 şi 14, ceea ce se verifică uşor (11+14=25). Nu uitaţi, după ce aţi rezolvat o problemă, verificaţi întotdeauna rezultatul obţinut!

Rezolvare(II)

Se poate realiza şi următorul desen:

Observăm că, dacă am adăuga la numărul mai mic 3 unităţi, suma ar creşte cu 3 şi numerele devin egale. Obținem așadar două părți egale.
Vom scrie

25+ 3=28, unde 28 este suma numerelor, dacă primul ar fi egal cu al doilea.

Câte părți egale am obținut în desen, după ce am adăugat 3?

1+1 = 2 (părți egale)

Dacă suma a două părți egale este 28, putem afla cât reprezintă o parte egală, împărțind suma la numărul de părți egale identificate.

apoi

28: 2=14.

Am aflat în acest mod numărul mai mare. Celălalt poate fi aflat tot în două moduri. Ori eliminăm unitățile îndepărtate inițial:

14-3=11,

Sau scădem din suma inițială numărul pe care l-am aflat:

25-11=14

Deci, numerele sunt 11 şi 14, rezultate obţinute şi prin prima variantă de rezolvare.

 

În final aş atrage atenţia că nu este de ajuns să ştiu în ce constă metoda figurativă şi să rezolv o problemă, două… Fiecare problemă aduce un element de noutate şi trebuie să ne punem în cât mai multe situaţii, adică să rezolvăm cât mai multe, pentru a nu fi luaţi prin surprindere!

 

Temă:

1. Un număr este cu 10 mai mare decât altul. Aflaţi cele două numere, dacă suma lor este 40.

2. Un număr este de 3 ori mai mare decât altul. Aflaţi numerele, dacă suma lor este 40.


Important!
Nu posta probleme fără a menționa în ce clasă ești și neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au împotmolit la rezolvare.
Mesajele care conțin doar cerințele problemei vor fi (probabil) ignorate.


Azi, la matematica: Folosirea parantezelor in exercitii

În exercitiile de matematică se folosesc trei tipuri de paranteze. Acestea sunt: accolade { }, drepte [ ] şi rotunde ( ), şi apar întotdeauna în pereche.
Rezolvarea unui exerciţiu în care apar cele trei tipuri de paranteze se face în felul următor:

  1. Efectuăm mai întâi operaţiile din parantezele rotunde, apoi scriem din nou exerciţiul şi transformăm parantezele acolade în paranteze drepte, iar parantezele drepte în paranteze rotunde, punând în locul parantezelor rotunde rezultatul obţinut.
  2. Continuăm tot cu efectuarea operaţiilor din parantezele rotunde – ( ) -, scriem din nou exerciţiul,  transformând parantezele drepte – [ ] – în paranteze rotunde – ( ) -, având grijă să înlocuim rezultatul obţinut anterior.
  3. Am ajuns la ultimele operaţii din parantezele rotunde, pe care le vom efectua.

Trebuie precizat că atunci când efectuăm operaţiile din parantezele rotunde ţinem cont de ordinea efectuării operaţiilor: întâi operaţiile de ordinul II (înmulţirea şi împărţirea), apoi cele de ordinul I (adunarea şi scăderea).

Voi exemplifica acest lucru prin rezolvarea unui exerciţiu. Iată-l:

{ 12 + 3 x [ 20-2 x (7 – 10 : 5 ) ] +13 } x 10 = 550

Luăm operaţiile din parantezele rotunde, 7 – 10 : 5 = 7 – 2 = 5 (am făcut mai întâi împărţirea, 10 : 5 = 2 şi apoi scăderea, 7 – 2 = 5 ).
Scriem din nou exerciţiul, înlocuim rezultul obţinut, transformăm corespunzător parantezele şi obtinem:

[ 12 + 3 x (20 -2 x 5 ) + 13 ] x 10 = 550

Repetăm paşii, ca mai sus, şi obţinem:
20 – 2 x 5 = 20 – 10 = 10 (am făcut înmulţirea, 2 x 5 = 10, şi apoi scăderea, 20 – 10 = 10 ).

Reluăm înlocuirea şi transformarea parantezelor şi obţinem:

( 12 + 3 x 10 + 13 ) x 10 = 550

Rezolvăm operaţiile dintre paranteze, ţinând cont de ordinea efectuării operaţiilor, 12 + 3 x 10 + 13 = 12 + 30 + 13 = 42 + 13 = 55 (am făcut înmulţirea 3 x 10 = 30, apoi adunarea 12+30=42, şi în sfârşit 42 + 13 = 35).
În final obţinem

55 x 10 = 550

Vom pune peste tot după semnul egal rezultatul obţinut, 550.

Rezolvarea se putea aranja şi în felul următor:

{ 12 + 3 x [ 20 – 2 x ( 7 – 10 : 5 ) ] + 13 } x 10 =
= { 12 + 3 x [20 – 2 x (7 – 2) ] + 13 } x 10 =
= [12 + 3 x (20 – 2 x 5) + 13 ] x 10 =
= [12 + 3 x (20 – 10) + 13] x 10 =
= (12 +3 x 10 + 13) x 10 =
= (12 + 30 + 13) x 10 = (42 + 13) x 10 =
= 55 x 10 = 550

Eu consider că primul mod prezentat este mai uşor, mai accesibil pentru un elev, al doilea necesitând mult mai multă atenţie. Dar fiecare elev îşi va alege modul de rezolvare pe care l-a înţeles mai bine.

Temă pentru acasă (rezultatul obţinut îl puteţi posta ca răspuns la acest articol)

  • (60 + 2 x 40) x (8 – 9 : 3 ) =
  • [50 + 60 x (7 – 3 x 2 )] : 10 =
  • 2 x {42 – [12 + (8 + 2×5 )]} =

Vă mulţumesc!


De la lume adunate si iarasi… la lume date!(Probleme de vacanta)

1) Mama mamii, soacra tatii şi bunica mea câţi ochi or avea?
a) 6 b) 2 c) 4 d) 0

2) Pe o bancă în parc, stau de vorbă două mame şi două fiice! Câte persoane sunt?
a) 4 b) 3 c) 2 d) 0

3) Ce este Ion cu Ana dacă mama lui Ion este soacra mamei Anei?
a) tată şi fiică b) soţ şi soţie
c) bunic şi nepoată d) nicio legătură


Matematica la sfarsitul clasei a patra…

Am observat de a lungul anilor că elevii care ajung în clasa a V-a şi nu citesc cursiv, sau nu cunosc tablele de operaţii decât parţial, au probleme foarte mari în asimilarea cunoştinţelor şi de cele mai multe ori îngroaşă rândul elevilor rămasi în urmă la învăţătură. Ar trebui ca părinţii să le ceară acasă să citească şi să socotească ori de câte ori au puţin timp liber.

În ceea ce priveşte matematica, părinţii îi pot cere copilului să numere din 2 in 2, din 3 in 3, din 4 in 4 ş.a.m.d. Chiar dacă vom încerca – şi asta se face la şcoală – să învăţăm tabla înmulţirii şi a împărţirii ca operaţii de adunare şi scădere repetată, este foarte greu pentru copii să o reţină în acest mod şi să facem şi performanţă. Este de ajuns să ştie că este aşa.

Când avem de făcut o înmulţire sau împărţire nu stăm să facem adunări repetate sau scăderi repetate. Închipuiţi-vă că au un exerciţiu cu paranteze, cu înmulţiri şi împărţiri, pe care trebuie să le facă cu adunări si scăderi repetate. Câtă muncă…

Prin exerciţii şi prin întrebări repetate vom putea să-i ajutăm pe copii să le înveţe. Dacă dispuneţi de un calculator puteţi căuta programe de învaţare a matematicii Există astfel softuri educaţionale şi sunt foarte utile. Elevul învaţă jucându-se, iar ora de joacă la calculator se poate transforma dintr-o pierdere de timp cu un joc inutil într-una de învăţare. Copilul poate să repete ori de câte ori doreşte toate tablele de operaţii. În acest fel îi putem satisface şi plăcerea de a se juca pe calculator, dar într-un mod util.

Să-i punem la dispoziţie şi o culegere clasică de probleme. Se găsesc în toate librăriile şi puteţi cere oricând sfatul învăţătorului sau profesorului privind lucrarea ce se recomandă copilului dumneavoastră, potrivit nivelului său de acumulare a cunoştinţelor.

De asemenea ar trebui să-i antrenăm în cât mai multe concursuri, să menţinem un nivel mediu al antrenamentului, fără să epuizăm copilul, dar fără să-i permitem să uite.

Vacanţa mare bate la uşă, şi pentru copii ea înseamnă joacă. Dar, tot în joacă, putem strecura un exerciţiu pe zi. Trei luni înseamnă mult, iar copiii uită repede.