Metode de rezolvare a problemelor: probleme de urmărire

Un tip de probleme care devin din ce în ce mai rare la ciclul primar sunt „problemele de viteză”, sau mai cunoscute ca probleme de mișcare. Înțeleg că sunt evitate, deoarece implică mărimi și noțiuni de fizică pe care copiii nu le au, dar pe care le pot totuși înțelege la această vârstă, pentru că s-au lovit constant de ele. Să luăm de exemplu noțiunea de „viteză”. O aude peste tot la tv, mai ales când accidentele țin în viață edițiile de știri. „Neadaptarea vitezei”, „viteză excesivă”, „depășirea limitei de viteză”. Primul lucru pe care îl reține este că viteza se măsoară în kilometri la oră.

Când am început să-i explic Irisucăi primele probleme de mișcare, i-am dat formula v=d:t. La un moment dat îmi spune că a memora așa, formule, e complicat, dar se gândește la kilometri la oră, că măsurăm distanța în kilometri, și ora este unitate pentru timp, și așa ține minte mai ușor. Așadar, are nevoie de asociere cu noțiuni pe care ea deja le-a înțeles/asimilat.

Problemele de mișcare trebuie însă pregătite cu un exercițiu de imaginație. Dacă nu-și va imagina problema, nu va putea să o rezolve, lectura textului fiind inutilă. Problemele de mișcare se împart în două mari categorii: prima – mobilele se deplasează în același sens (probleme de urmărire) și mobilele se deplasează în sens contrar (probleme de întâlnire). Se presupune din start că mobilele se deplasează în linie dreaptă, cu viteză constantă, și avem mișcare rectilinie și uniformă, altfel nu putem discuta de formula de mai sus, și nici rezolva problemele.

Acest articol este dedicat problemelor de urmărire.

Pentru a înțelege problemele, copilul trebuie să se gândească întâi, logic, dacă problema este posibilă, cu exemple.

Orașele A și B se află pe aceeași șosea, la o distanță de 18 km unul de celălalt. Din orașul A pleacă spre orașul B la ora 12 un pieton. Din orașul B pleacă, în același sens, și la aceeași oră, un biciclist. La ce distanță de orașul A se întâlnesc cei doi, dacă pietonul se deplasează cu 3km/h, iar biciclistul cu 12km/h?

probleme_de_miscare

Dacă sărim la calcule, deja am pierdut problema din mână. Primul exercițiu care trebuie făcut este cel logic. Dacă biciclistul pleacă din orașul B, se apropie sau se depărtează de pieton? Are vreo șansă un om care merge pe jos să îl ajungă pe biciclist, care se deplasează mai repede decât el? Așadar, problema nu poate fi rezolvată (și cum materialele pentru elevi sunt pline de greșeli, exercițiul logic este obligatoriu).

Orașele A și B se află pe aceeași șosea, la o distanță de 18 km unul de celălalt. Din orașul A pleacă spre orașul B la ora 12 un pieton. Din orașul B pleacă, în același sens, și la aceeași oră, un alt pieton. La ce distanță de orașul A se întâlnesc cei doi, dacă pietonul din A se deplasează cu 3km/h, iar pietonul din B cu 3km/h?

probleme_miscare2

Folosind raționamentul de mai sus, stabilim că cei doi nu se vor întâlni niciodată, pentru că se deplasează cu aceeași viteză. Așadar – nici aici nu putem da un răspuns la întrebarea din problemă.

Orașele A și B se află pe aceeași șosea, la o distanță de 3km unul de celălalt. Din orașul A pleacă spre orașul B la ora 12 un biciclist . Din orașul B pleacă, în același sens, și la aceeași oră, un pieton. La ce distanță de orașul A se întâlnesc cei doi, dacă pietonul se deplasează cu 3km/h, iar biciclistul cu 12km/h?

probleme_miscare3

De data aceasta, stabilim că oricât de încet merge pietonul, biciclistul merge mai repede decât el, așadar la un moment dat îl va ajunge. Rămâne să aflăm când.

Am dat exemplele cu pieton și biciclist pentru a fi evident că unul se deplasează mai repede. Problemele pot avea diverse mobile, atenția trebuie să se oprească asupra vitezei cu care se deplasează acestea. Un alt aspect asupra căruia copilul trebuie să fie atent este ca unitățile de măsură să fie identice. În general acest tip de provocare este pentru clasele gimnaziale, dar nu se știe niciodată când viteza se exprimă în metri/secundă și este nevoie de transformări.

Revenind la ultima problemă, întâi trebuie să aflăm ce se întâmplă într-o oră.

12 – 3 = 9 ,

așadar, într-o oră, distanța dintre biciclist și pieton se micșorează cu 9 km, sau biciclistul este cu 9 km mai aproape de pieton.

Dinstanța dintre ei este de 18 km, și se micșorează cu 9 km în fiecare oră.

18 : 9 = 2 

Două ore este timpul necesar pentru ca biciclistul să recupereze distanța dintre ei. În fiecare oră el recuperează 9km, așadar are nevoie de două ore pentru a recupera întreaga distanță.

Problema ne întreabă însă la ce distanță de A se vor întâlni cei doi. Putem afla răspunsul în două moduri:

I) Calculăm ce distanță parcurge pietonul în două ore –  3 x 2 = 6 (km) , și o adunăm cu distanța dintre cele două localități – 6 + 18 = 24 (km) . Așadar, se întâlnesc la 24 km distanță pe șosea de localitatea A.

II) Calculăm ce distanță parcurge în două ore biciclistul, care pleacă din A – 2 x 12 = 24 (km), și aflăm direct răspunsul final.

Este recomandabil să încurajați copilul să descopere ambele moduri de rezolvare, se poate verifica, și în același timp dobândește flexibilitate în gândire, toleranță față de opiniile celorlalți. Pot avea dreptate doi oameni, chiar dacă nu au mers pe același drum.

Problemele de urmărire pot avea și alte variante: cele două mobile pleacă din același punct, dar la ore diferite, și atunci trebuie să aflăm unde, la ce distanță de punctul de plecare se află primul mobil, atunci când pornește al doilea. Modelul de mai sus este forma la care se reduce orice problemă de urmărire pentru a fi rezolvată, iar algoritmul este următorul:

  • se stabilește dacă „urmăritorul” îl poate ajunge pe urmărit.
  • se află cu cât se micșorează distanța dintre cei doi în unitatea de timp
  • se calculează în câte unități de timp poate fi recuperată distanța dintre cei doi în momentul în care se pun în mișcare.

Dincolo de acestea, mare atenție ce anume cere problema: să se afle distanța față de punctul de plecare, ori față de un punct intermediar de pe traseu care trebuie calculat.

 

Dacă v-ați lovit de probleme de mișcare ce v-au dat bătăi de cap, adaugați-le mai jos, împreună cu raționamentul/încercările de rezolvare eșuate, și vom încerca să le rezolvăm împreună. Menționez că nu este un articol ce-și propune să rezolve temele elevilor. Matematica este 1% inspirație și 99% transpirație. Cu inspirația am dat o mână de ajutor mai sus.

 

Trenul cu 4 diferente, joc logic pentru preșcolari

Jocuri matematice cu forme geometrice pentru preșcolari și clasa pregătitoare

Când Andreiul meu a început să meargă la grădiniță, problema jucăriilor nu a fost una ușor de rezolvat. Nu aveam seif acasă, și nu-mi permiteam să dau foarte mulți bani, iar dacă îi investeam, atunci trebuia s-o fac cu cap. Printre seturile achiziționate atunci a fost și o trusă logică tip LOGI II. Nu știam, ca mamă, exact cum se folosește, însă îmi aminteam că am avut-o și eu la grădiniță și acasă, că mă jucam cu formele geometrice, construind tot felul de peisaje abstracte. Cumva am intuit cu el ce-aș putea face cu trusa: comparații  de mărime și grosime, sortări de piese după formă, culoare. Le foloseau și la grădiniță, și cumva m-am mulțumit atunci cu această variantă de joc.

Anul acesta, al doilea de facultate, am aflat (pentru mine, ca mamă, prea târziu) ce se putea face cu acest joc. Am constatat că între timp am mai pierdut din piese (și a fost un chin să-mi confecționez 4 din fimo, au ieșit stâmbe, și probabil o să-mi iau o nouă trusă). Dar am avut și câteva aplicații de realizat pentru cursul de didactică, și dintre toate subiectele, cele cu forme geometrice au fost preferatele mele.

Pentru realizarea capitolului de jocuri din portofoliu am folosit volumul de mai jos, pe care l-am achiziționat înainte de a reuși să fac rost de bibliografia recomandată. Dar, chiar și așa, mi se pare că expune clar și la obiect jocuri ce pot fi făcute cu copiii de vârste mici, nu numai cu forme geometrice, cum aveam eu nevoie, ci și cu alte tipuri de material, pentru cei în criză de idei acasă.

Revenind la trusa Logi, am folosit-o pentru jocul celor două cercuri, jocul celor trei cercuri, trenul cu 1, sau 2, 3, 4 diferențe. Pe lângă acestea sunt și altele, derivate, pe care le găsiți în volum. Alcătuirea de mulțimi, asocierea obiectelor după una sau mai multe proprietăți comune, compararea, sortarea, serierea, nu sunt deloc simple, chiar dacă jocurile par „banale”. Însă aceste jocuri solicită foarte mult și adultul de lângă copil.

La grădiniță m-am lovit deseori de noțiuni de matematică la opțional. După curs mi-am dat seama destul de repede de ce unele activități practice nu „ies” – pentru că copiii nu stăpânesc cum trebuie noțiunile… iar eu ceream de la ei prea multă matematică pe care nu și-o însușiseră. Așadar lecțiile mele practice au inclus și aceste elemente, și lucrurile au început să meargă mai bine.

Am avut și ocazia să lucrez direct cu un băiețel de 5 ani, aflat în vizită, tocmai când eu îmi pregăteam piesele și materialele pentru susținerea portofoliului. Mergea la grădiniță, dar nu văzuse niciodată piesele, și nu lucrau cu ele. A cooperat fantastic, însă după joc eram amândoi terminați de oboseală, iar eu mă gândeam cum ar fi posibil să faci jocul cu 30 de copii simultan…

Jocul celor trei cercuri

Jocul celor trei cercuri l-am ilustrat într-o prezentare, pe care o puteți vedea mai jos. Copilul trebuie să așeze piesele – triunghiuri, cercuri, pătrate și dreptunghiuri (la grupa mare!), roșii, galbene și albastre, mici, mari, groase și subțiri, după trei reguli, în trei cercuri care se intersectează, zonele de suprapunere fiind destinate pieselor cu proprietăți comune. De reținut că la grupa mică se folosesc două forme – cerc și pătrat, la mijlocie se adaugă triunghi, la grupa mare – dreptunghi, și, dacă grupa permite, oval și romb, iar jocul se adaptează la condiții.

Se poate lucra cu mai puține, depinde de copil, câtă răbdare are să sorteze piesele, sunt totuși 48… Jocul cu două cercuri este similar, având două cercuri – două reguli.

Trenul cu diferențe

Mai mult mi-a plăcut „trenul” cu o diferență (și cu 2, 3, 4). Regula este simplă: se așază o locomotivă. Piesa care urmează – primul vagon – trebuie să aibă o singură diferență (sau în funcție de tipul de joc – 2/3/4) față de locomotivă. Dacă locomotiva este cerc, mare, roșu, gros, și acceptăm o singură diferență, piesa următoare poate fi:

  • orice altă formă decât cerc, dar mare, roșu și gros.
  • cerc, roșu și gros, dar mic.
  • cerc, mic, gros, dar galben sau albastru.
  • cerc, mic, roșu, dar subțire.

Dacă trenul trebuie să aibă două diferențe, copilul trebuie să „nege” două dintre caracteristici. Același exemplu – locomotiva este cerc, mare, roșu, gros, urmează un vagon:

  • orice altă formă decât cerc, mic, dar roșu și gros (și poate fi pătrat/triunghi/dreptunghi, mic, roșu, gros).
  • orice altă formă decât cerc, subțire, dar roșu și mare (și poate fi pătrat/triunghi/dreptunghi, mare, roșu, subțire).
  • orice altă formă decât cerc, galben sau albastru, dar gros și mare.

Combinațiile pot continua de aici în multiple variante, este aproape imposibil să le scriu pe toate. Algoritmul se aplică identic pentru 3 și 4 diferențe, iar pe măsură ce numărul de diferențe crește, numărul de posibilități scade. Jocul poate continua până la epuizarea tuturor pieselor/posibilităților, sau poate avea, de la început, un număr limitat de vagoane.

Puteți confecționa piesele și din hârtie, iar pentru cele „groase” să folosiți un carton cu ajutorul căruia copilul să simtă diferența de grosime, dar cred că munca pentru a le decupa face cei 15 lei, cât costă trusa pentru copii (atenție, are piese mici ce pot fi înghițite!)

Mai jos am aranjat câteva „trenulețe”, pentru care puteți pregăti și decorul, într-o activitate anterioară. Pentru a nu induce copilul în eroare, nu folosiți pentru colorare roșu, galben și albastru, și lăsați vagoanele goale.

Trenul cu o diferență, joc logic pentru preșcolari

Trenul cu o diferență (o singură caracteristică diferită): Locomotiva: cerc, roșu, gros, mic; Vagon 1: pătrat, roșu, gros, mic; Vagon 2: pătrat, galben, gros, mic; Vagon 3: pătrat, galben, subțire, mic (este subliniată diferența față de elementul anterior.)

Trenul cu 2 diferențe, joc logic pentru preșcolari

Trenul cu două diferențe (două caracteristici diferite): Locomotiva: cerc, roșu, gros, mic; Vagon 1: pătrat, galben, gros, mic; Vagon 2: pătrat, galben, subțire, mare; Vagon 3: cerc, albastru, subțire, mare (sunt subliniate diferențele față de elementul anterior.)

Trenul cu 3 diferențe, joc logic pentru preșcolari

Trenul cu trei diferențe (trei caracteristici diferite): Locomotiva: cerc, roșu, gros, mic; Vagon 1: pătrat, galben, subțire, mic; Vagon 2: pătrat, albastru, gros, mare; Vagon 3: triunghi, albastru, subțire, mic (sunt subliniate diferențele față de elementul anterior).

Trenul cu 4 diferente, joc logic pentru preșcolari

Trenul cu patru diferențe (toate carateristicile diferite): Locomotiva: cerc, roșu, gros, mic; Vagon 1: triunghi, albastru, subțire, mare; Vagon 2: pătrat, galben, gros, mic; Vagon 3: cerc, roșu, subțire, mare.

Alte jocuri

Un ultim joc pe care l-am inclus în portofoliu, și pentru care mi-am confecționat cu ajutorul unui prieten piese mai mari, din plexiglass, a fost „Trăistuța Veronicăi”. Piesele – pe care copilul le cunoaște (care sunt mari, care sunt mici, care este „gros” și care este „subțire” – caracteristici care nu se pot stabili decât prin comparație), sunt introduse într-un săculeț. Cu ochii închiși, copilul extrage din săculeț o piesă, pe care trebuie să o pipăie, și să stabilească caracteristicile: ce formă este, dimensiune și grosime. Dacă a răspuns corect, deschide ochii și spune și culoarea.

Un joc didactic trebuie, dincolo de sarcina sa educațională, să rămână pentru copil un joc, adică o activitate în care el se simte bine și se implică de plăcere. Dacă vreți ca învățarea prin joc să aibă succes, aveți răbdare și nu vă enervați când nu reușește. Inventați și schimbați tactica. Pentru cadrele didactice care mă urmăresc, articolul poate părea simplu. Dar pentru părinții dornici să se joace acasă cu copilul, nu este deloc. Dar dacă nu vă plac copiii uitați în fața televizorului, provocați-i.

Rezolvarea problemelor prin metoda figurativă (varianta 2)

Există deja aici pe blog un articol despre metoda figurativă, varianta cunoscută de toată lumea – cu segmente. Însă sunt și probleme la care, oricât ne-am strădui, nu vom reuși să reprezentăm astfel suficient de clar datele pentru a fi pe înțelesul copiilor (clasa a IVa). Iată o astfel de problemă, și un model de rezolvare:

O familie cu copii are de 4 ori mai multe caiete dictando  decât caiete de matematică.
După ce fiecare copil primește câte 2 caiete de matematică și 3 de dictando, rămân 2 caiete de matematică și 43 de dictando.

Câte caiete și câți copii sunt ?

Pentru a ușura scrierea, voi nota în continuare cu M caietele de matematică și cu D caietele dictando.

Prima tendință în rezolvare este de a reprezenta cu segmente datele cunoscute ale problemei:

|____________| – caiete matematică

|____________|____________|____________|____________| – caiete dictando

Însă această reprezentare nu ne ajută la această problemă, când caietele sunt redistribuite. Așa că le vom așeza ca mai jos, atribuind fiecărui caiet de matematică patru caiete dictando, căci sunt de 4 ori mai multe.

metoda figurativa

În acest moment am reprezentat toate caietele M și toate caietele D, care formează împreună grupuri, și avem de 4 ori mai multe D decât M.

Însă problema spune că aceste caiete sunt reorganizate, astfel încât fiecare copil primește 2 M și 3 D. Vom forma grupuri în care includem Acest număr de caiete, și observăm că, dacă luăm câte două grupuri inițiale, avem două caiete M, dar 8 caiete D.

Ca să rămânem cu 3, cum se specifică, trebuie să înlăturăm

8 – 3 = 5 (caiete D)

metoda figurativa

Am format grupuri similare numărului de copii din familie. Însă problema spune că rămân 2 caiete M și 43 D. Observăm că mai putem realiza un grup 2 M + 3 D, grup care nu va fi atribuit niciunui copil, dar acest lucru ne ajută să scăpăm de o necunoscută –  caietele de matematică.

metoda4figurativa

Unde „dispar” caietele D tăiate din grupurile inițiale? În dreapta, în cele 43 de caiete rămase.

Dacă mai formăm un grup de caiete (încadrat cu roșu), atunci vom avea:

43 – 3 = 40 (caiete D nedistribuite)

Raționamentul aici este următorul: avem 40 de caiete, care provin din X grupuri, și din fiecare grup câte 5. Din câte grupuri provin caietele?

40 : 5 = 8 (grupuri)

Dar aceste 8 grupuri nu reprezintă numărul copiilor, ci cu unul mai mult, căci noi am mai alcătuit un grup pe care nu l-am dat nimănui. Așadar, câți copii sunt în familie?

8 – 1 = 7 (copii)

Câte caiete M avem?

8 x 2 = 16 (caiete matematică)

Câte caiete D avem? (știm că sunt de 4x mai multe)

16 x 4 = 64 (caiete dictando)

Răspuns: 7 copii, 16 caiete matematică, 64 caiete dictando.

 

Succes!

Info: un copil normal, pentru a deprinde un algoritm de rezolvare, trebuie să îl exerseze de cel puțin 6-8 ori. Un copil cu dificultăți, până la 40 de ori.

Matematica: ultima cifra a unui numar natural

Mi-am propus să o dezvolt într-o mică expunere pentru cei interesaţi o temă pe care nu o găsim expusă sistematic în manualul şcolar, dar solicitată de multe ori aici pe blog.

Prin ultima cifră a unui număr înţelegem cifra unităţilor. Ultima cifră a numărului 4 este 4. Ultima cifră a numărului 23 este 3. Ultima cifră a numărului 157 este 7.

Se notează astfel:

  • U(4) = 4
  • U(23) = 3
  • U(157) = 7

Putem să extindem această noţiune pentru o sumă, pentru un produs în felul următor.

U(a+b)=U(a)+U(b) şi U(a*b)=U(a)*U(b).

Iată câte un exemplu.

U(12+17)=U(12)+U(17)=2+7=9
şi
U(12*17)=U(12)*U(17)=U(2*7)=U(14)=4.

Dacă vom studia ultima cifră a numerelor vom observa că unele au mereu ultima cifră aceeaşi, altele nu. Din prima categorie fac parte numerele care se termină cu 0, 1, 5 si 6. Să considerăm câte un exemplu din fiecare.

Fie 10 1=10; 10 2=100; 10 3=1000 şamd.
Observăm că 10 ridicat la orice putere, diferită de zero, are ultima cifră 0.

Fie 11 1=11; 11 2=121; 11 3=1331, şamd.
Observăm că 11 ridicat la orice putere, are ultima cifră 1.

Fie 5 1=5; 5 2 =25; 5 3=125, şamd.
Observăm că numărul 5 ridicat la orice putere, diferită de 0, are ultima cifră 5.

Fie 6 1=6; 6 2 =36; 6 3=216, şamd.
Observăm că numărul 6 ridicat la orice putere, diferită de 0, are ultima cifră 6.

Din cele prezentate reţinem următoarele:

a) Un număr care are ultima cifră 0 ridicat la orice putere diferită de 0, are ultima cifră 0.
b) Un număr care are ultima cifră 1 ridicat la orice putere, are ultima cifră 1.
c) Un număr care are ultima cifră 5 ridicat la orice putere diferită de 0, are ultima cifră 5.
d) Un număr care are ultima cifră 6, ridicat la orice putere diferită de 0, are ultima cifră 6.

Pentru un numar care are ultima cifră diferită de cele de mai sus, se procedează ca in exemplul urmator.

Să se afle ultima cifră a numarului 2 2015. (Se procedează la fel pentru 12 2015).

Calculăm câteva puteri. 2 1=2; 2 2=4; 2 3=8; 2 4=16; 2 5=32; 2 6=64; 2 7=128; 2 8=256; şamd.
Observăm că ultima cifră a acestor numere se repetă din 4 în 4, iar 2 4 sau 8 sau 12 sau 16…, are ultima cifră 6 ( un număr cu ultima cifră 6).
Din acest motiv, împărţim 2015 la 4 şi obţinem câtul 503 şi rest 3, ceea ce se scrie 2015=503×4+3.
Vom scrie U(2 2015)=U( 2 503×4+3)=U( 2 503×4)*U( 2 3)=U(( 2 4) 503)*8=U( 16 503)*8= U(6*8)=  =U(48)=8.

Ca temă, calculati, după acelaşi model, 3 2015, 4 2015, 7 2015, 8 2015 si 9 2015.

Cu aceste minime cunoştinte putem afla ultima cifră pentru diverse sume si produse.

Rezolvarea problemelor cu ajutorul ecuatiilor si sistemelor de ecuatii

Aş vrea să prezint în cele ce urmează cum trebuie să procedăm atunci când rezolvăm probleme cu ajutorul ecuaţiilor şi sistemelor de ecuaţii. Orice problemă de matematică am avea de rezolvat, ea trebuie mai întâi înţeleasă, trebuie să găsim legaturile ce există între mărimile date în textul ei şi apoi să-l transpunem în limbaj matematic.

Rezolvarea problemelor cu ajutorul ecuaţiilor sau sistemelor de ecuaţii se face parcurgând câteva etape obligatorii, fără a fi necesar să le precizăm de fiecare dată în scris, în redactarea rezolvării.

Paşii necesari:

  1. găsirea necunoscutei (necunoscutelor) din problemă;
  2. scrierea modelului matematic (a ecuaţiei sau sistemului de ecuaţii);
  3. rezolvarea ecuaţiei sau sistemului de ecuaţii;
  4. verificarea şi interpretarea rezultatului găsit. De ce şi interpretarea rezultatului? Pentru că ne putem da seama de eventualele greşeli de calcul pe care le-am făcut! 

Precizez că şi aici trebuie să cunoaştem foarte bine semnificaţia cuvintelor cheie:

  • cu atât mai mult – adunare;
  • cu atât mai puţin – scădere;
  • de atâtea ori mai mult – înmulţire;
  • de atătea ori mai puţin – împărţire;
  • numărul x mărit cu 2 se scrie x+2;
  • numărul x micşorat cu 2 se scrie x-2;
  • numărul x mărit de 2 ori se scrie 2x;
  • numărul x micşorat de doua ori se scrie x:2, etc.

Voi rezolva ca model câte o problemă din fiecare.

1. Un număr este cu 2 mai mare decât altul. Aflaţi numerele dacă suma lor este 24.

Fie x numărul mai mic; celălalt este x+2.

Obţinem ecuatia: x+x+2=24
2x+2=24
2x=24-2
2x=22
x=22:2
x=11(I)
11+2=13(II)

Verificare:11+13=24

2.Suma a două numere este 24, iar diferenţa lor este 4. Aflaţi numerele.

Fie x şi y numerele necunoscute.
Obţinem sistemul x+y=24 & x-y=4.
Adunăm membru cu membru şi obţinem 2x=28 & x+y=24
x=28:2 & x+y=24, de unde
x=14 & 14+y=24 sau
x=14 & y=24-14 sau
x=14 & y=10

Verificare 14+10 =24 & 14-10=4.

Culegerile de probleme existente pe piaţa  conţin multe astfel de probleme. Cu cât rezolvăm mai multe  probleme cu atât ne vom descurca mai bine ca rezolvitori!

 


Proprietatile egalitatilor in multimea numerelor naturale

Fie a şi b două numere naturale; scrierea a=b desemnează egalitatea numerelor a şi b. În această egalitate, a se numeşte membrul stâng al egalitaţii (membrul întâi al egalitaţii), iar b membrul drept al egalitaţii (membrul doi al egalitaţii). Exemple: 5=5, 7=7, 100=100.

1. Dacă avem o egalitate şi adunăm în ambii membri acelaşi număr natural, obţinem tot o egalitate. Din 3=3, adunând 7 în ambii membri, obţinem 3+7=3+7, sau 10=10, adică tot o egalitate.

2. Dacă avem o egalitate şi scădem din ambii membri acelaşi  număr natural (scăderea să se poată face), obţinem  tot o egalitate. Din 11=11, scăzând 6 din ambii membri, obţinem 11-6=11-6, sau 5=5, adică tot o egalitate.

3. Dacă avem o egalitate şi înmulţim ambii membri cu acelaşi număr natural, obţinem tot o egalitate. Din 8=8, înmulţind ambii membri cu 7, obţinem 8*7=8*7, sau 56=56, adică tot o egalitate.

4. Dacă avem o egalitate şi împărţim ambii membri cu un număr natural diferit de zero şi împărţirea se poate face, obţinem  tot o egalitate. Din 15=15, împarţind ambii membri cu 5, obţinem 15:5=15:5, sau 3=3, adică tot o egalitate.

5. Dacă avem două egalităţi şi le adunăm membru cu membru, obţinem tot o egalitate. Din 4=4 şi 7=7, adunând membru cu membru obţinem 4+7=4+7 sau 11=11, adică tot o egalitate.

6. Dacă avem două egalităţi şi le scădem membru cu membru şi scăderea se poate face, obţinem tot o egalitate. Din 13=13 si 5=5, scăzând membru cu membru obţinem 13-5=13-5 sau 8=8, adică tot o egalitate.

7. Dacă avem două egalităţi şi le înmulţim membru cu membru, obţinem tot o egalitate. Din 14 =14 si 3=3, înmulţind membru cu membru obţinem14*3=14*3 sau 42=42, adică tot o egalitate.

8. Dacă avem  două  egalitaţi şi le împărţim membru cu membru şi împărţirea se poate face, obţinem tot o egalitate. Din 18=18 si 6=6, împărţind membru cu membru, obţinem 18:6=18:6 sau 3=3, adică tot o egalitate.

Observaţie: Proprietăţile egalităţilor rămân valabile şi în celelalte mulţimi de numere: întregi, raţionale, iraţionale, reale. Unele restricţii nu mai sunt necesare, altele se menţin.

Ca exerciţii puteţi încerca cele de mai sus şi pe alte exemple.


Mate2000 (Editura Paralela 45) si concursul COMPER


 Update 7 mai 2011: Conform Regulamentului, la Etapa a II-a a Concursului Şcolar Naţional COMPER se pot înscrie şi elevi care nu au participat la prima etapă. De asemenea, organizatorul are rugămintea ca grilele de punctaj să fie printate de pe site-ul concursului, cu respectarea strictă a specificaţiilor. Data limită de înscriere pentru etapa a doua este 15 mai 2011, probele urmând a se desfăşura pe 18 mai, la Limba şi literatura română, şi 25 mai la Matematică. Elevii pot participa numai sub coordonarea unui cadru didactic.

Succes tuturor participanţilor!


 12 ianuarie 2011:
Mate2000. Editura Paralela 45 De azi într-o săptămână avem emoţii, căci se desfăşoară proba la matematică în cadrul concursurilor naţionale COMPER. Cum am ajuns noi să participăm? Simplu… de la începutul anului ne-am cumpărat, toată clasa, culegerea pentru matematică. Ca o paranteză, până să ajungem la şcoală, tot auzeam şcolarii vorbind de culegeri, şi mă cam îngrozea ideea. Când eram noi şcolari, culegerile erau ceva high-level, să ajungi să ai temă de-acolo era SF, doar la cercul de matematică se deschidea culegerea cu "Roboţel". Am ajuns la şcoală şi am constatat că acum nu mai e o sperietoare, e un fel de revistă cu jocuri adaptată programei. Ok, hai că e exagerat cu revistă, dar e amuzant să lucrezi pe ea. Nu mai simţi că dai piept cu uraganul, doar exersezi ceea ce ai învăţat, pentru o mai bună fixare a cunoştinţelor.

Cam asta facem noi de la începutul anului cu Mate2000. Ce mi-a plăcut a fost în primul rând ideea de a oferi copiilor, pe lângă culegere, şi o probă de concurs. Culegerea reprezită "biletul" de participare, căci la sfârşit este inserată fişa de concurs pentru fiecare elev. Şi, dacă punem la socoteală celelalte concursuri, la care plăteşti pentru participare cam aceeaşi sumă, dar nu primeşti nimic în plus, cred că alegerea nu e rea deloc. Există variante pentru toţi anii de studiu, primar şi gimnazial, pentru română şi matematică.

Aseară ne-am jucat un pic cu testele pentru proba de limba română, care se desfăşoară astăzi. Pe site îţi poţi face cont de elev, şi ai acces atât la testul de antrenament (poate nu era o idee era să fie mai multe…) cât şi la cele 5 variante pentru concurs, care se afişează cu o zi înainte. Personal nu îmi plac testele anunţate. Ok, anunţi modelul de subiect, dar subiectul efectiv… să nu mă întrebaţi ce părere am despre examenul de bac, când ştii dinainte ce poate fi scris pe bilete. Roboţei creăm, de roboţei avem parte…

Am avut şi ceva bătaie de cap cu testele, în primul rând pentru că noi nu am ajuns la litera "L". Cred că abia vineri îl vor învăţa. Apoi, nici structura unui text, cu ce este acela "titlu", nu am studiat, urmează. I-am explicat pe loc, şi a înţeles ce-i de făcut.

Am hotărât ca la proba de matematică să nu-i arăt subiectele înainte. Asta e, nu avem nimic de pierdut, şi nici de câştigat. Vreau să văd ce poate face cu un test la prima vedere. Vom avea apoi timp suficient să rezolvăm toate variantele propuse.

Îi ţinem pumnii doamnei învăţătoare, să aibă net, să meargă xeroxul, pentru că participarea este posibilă numai cu ajutorul dânsei. Ca elev independent, sau ca părinte, nu poţi participa. Ştiu că o diplomă de mentor nu va răsplăti efortul depus, aşa că sper ca satisfacţiile să vină din succesele copiilor. Multă baftă, clasa IB!

Legături utile: Culegerea Mate 2000, Concursurile COMPER , Regulamentul de participare.


Rezolvarea problemelor de matematica prin metoda reducerii la unitate

Prin această metodă se rezolvă multe probleme de matematică, în care datele depind unele de altele.
Pentru cei pasionaţi de matematică, aici se încadrează problemele în care apar mărimi direct proporţionale şi invers proportionale, care se rezolvă prin procedeul proporţiilor şi prin procedeul reducerii la unitate folosit în clasa a IV-a. Voi exemplifica prin rezolvarea câtorva probleme. Se numeşte metoda reducerii la unitate deoarece, întotdeauna, se află cât valoreaza unitatea.

Problema 1. O persoană cumpără 5 kg de mere şi plăteşte 15 lei. Dacă va cumpăra 7 kg de mere de aceeaşi calitate, cât va plăti?
Rezolvare. Dacă 5 kg de mere valoreaza 15 lei, atunci 1 kg va costa de 5 ori mai puţin,
adica 15 lei : 5 = 3 lei. 7 kg de mere vor costa de 7 ori mai mult, adică 3 lei x 7 = 21 lei.

Calculele se pot aseza astfel:
5 kg ………………………………..15 lei
1 kg…………………….15 lei : 5 = 3 lei
7 kg…………………….3 lei x 7 = 21 lei

Problema 2. Un bazin se umple prin 3 robinete în 15 ore. În cât timp vor umple acelaşi bazin 9 robinete care au acelasi debit?
Rezolvare. Dacă bazinul se umple folosind 3 robinete în 15 ore, un singur robinet o va face într-un timp de 3 ori mai mare, adică 15 ore x 3 = 45 ore. Cele 9 robinete vor umple bazinul într-un timp de 9 ori mai mic, adică 45 ore : 9 = 5 ore.

Calculele se pot aseza astfel:
3 robinete……………………………………………15 ore
1 robinet…………………………..15 ore x 3= 45 ore
 9 robinete………………………….45 ore : 9=   5 ore

Pentru cei ce cunosc operaţii cu fracţii, voi rezolva o problema la nivelul clasei a VI-a, tot prin metoda reducerii la unitate.

Problema 3. Pentru a ara 810 ha de teren arabil, 6 tractoare au lucrat 45 de zile. Dacă ar trebui să arăm 2100 ha şi dispunem de 10 tractoare, cât timp le va fi necesar? (Presupunem că tractoarele îndeplinesc aceeaşi normă).

Rezolvare. În acest caz, vom reduce, pe rând, la unitate, suprafaţa şi numărul de tractoare, apoi se revine, invers, la datele cerute. Dacă 810 ha au fost arate de 6 tractoare în 45 de zile, 1 ha va fi arat de 6 tractoare în 45 zile : 810.
Tot 1 ha va fi arat de 1 tractor într-un timp de 6 ori mai lung adică (45 zile : 810) x 6. 
Tot 1 ha va fi arat de 10 tractoare  mai repede, adică [(45 zile :810)x 6] : 10.
Pentru a ara 2100 ha va dura mai mult, adică {[( 45 zile : 810)x 6] :10}x 2100
şi după efectuarea calculelor obţinem 70 de zile. 

Calculele se pot aseza astfel:
810 ha…………….6 tractoare………………….45 zile
 1 ha………………6 tractoare…………………..45 zile:810
 1 ha………………1 tractor……………………..(45 zile:810)x 6
1 ha………………10 tractoare………………….[(45 zile:810)x 6]: 10
2100 ha………..10 tractoare……………..{[(45 zile:810)x 6]: 10}x 2100= 70 zile   

Vă propun spre rezolvare următoarele probleme:
1. O gospodină a cumpărat 13 kg de cartofi şi a plătit 26 de lei. Cât a plătit alta gospodină, dacă a cumparat 7 kg de cartofi de aceeaşi calitate?
2. O echipă de 50 de muncitori termină o lucrare în 30 de zile. În cât timp va termina aceeaşi lucrare o echipă de 15 muncitori? (Toţi muncitorii îndeplinesc aceeaşi normă).
3. Un fermier are 5 vaci, care timp de 30 de zile consuma 1800 kg de furaj. Cât furaj consumă 12 vaci în 18 zile, daca raţia (porţia) unei vaci pe zi rămane aceeaşi?

Postează într-un comentariu la acest articol rezolvarea, şi vei primi răspuns dacă este corectă.

 


Important!
Nu posta probleme fără a mentiona în ce clasă esti si neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au impotmolit la rezolvare.
Mesajele care contin doar cerintele problemei vor fi ignorate.


Metode de rezolvare a problemelor de matematica: metoda falsei ipoteze

Problemele care se pot rezolva prin această metodă sunt de două tipuri. Cele de tipul unu necesită o singură ipoteză, iar cele tipul al doilea, două sau mai multe ipoteze succesive.

Metoda se numeşte a falsei ipoteze, deoarece se consideră că ipoteza nu corespunde cu adevărul.

Pentru exemplificare voi rezolva următoarea problemă:

Într-un bloc sunt apartamente cu două camere şi cu trei camere, în total 20 de apartamente şi 45 de camere. Câte apartamente au două camere şi câte au trei camere?

Rezolvarea I. Presupunem că în bloc sunt numai apartamente cu două camere şi atunci vor fi

20 x 2 camere = 40 camere.

Diferenţa de camere,

45-40= 5 camere

apare din faptul că sunt şi apartamente cu trei camere. Cele 5 camere le vom împarţi, adăugând câte una, 5:1= 5, la 5 apartamente, pentru că unele au 3 camere. Înseamnă că sunt 5 apartamente cu trei camere, iar cu două camere vor fi

20-5=15 apartamente.

Rezolvarea II. Presupunem că în bloc sunt numai apartamente cu trei camere şi atunci vor fi

20x 3 camere= 60 camere.

Diferenţa de camere,

60-45= 15 camere

apare din faptul că sunt şi apartamente cu două camere.Vom lua câte o cameră de la 15:1=15 apartamente.Vor fi 15 apartamente cu două camere, iar cu trei camere vor fi

20-15= 5 apartamente.

Rezolvaţi asemănător problemele:
1) Într-un bloc sunt apartamente cu 4 camere si cu 2 camere, în total 24 apartamente şi 68 de camere.Câte apartamente sunt de fiecare tip?
2) Într-o curte sunt găini şi iepuri, în total 33 de capete şi 106 picioare. Câte găini şi câţi iepuri sunt în curte?

Postează răspunsurile tale la acest articol şi vei afla dacă ai rezolvat corect.

Spor la lucru!


Important!
Nu posta probleme fără a menționa în ce clasă ești și neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au împotmolit la rezolvare.
Mesajele care conțin doar cerintele problemei vor fi mai mult ca sigur ignorate.


 

Rezolvarea problemelor de matematica prin metoda mersului invers

Această metodă de rezolvare a problemelor de matematică se aplică problemelor în care datele depind succesiv unele de altele. Enunţul problemei trebuie urmărit de la sfârşit către început.
În timpul rezolvării efectuăm operaţia inversă celei care apare în enunţ, ceea ce înseamnă că nu numai mersul este invers, ci şi operaţiile pe care le facem sunt inverse celor celor din enunţul problemei.
Proba se face aplicând numărului determinat operaţiile din enunţul problemei. Voi exemplifica prin rezolvarea următoarei probleme:

M-am gândit la un număr, l-am înmulţit cu 10, la rezultat am adunat 16, suma am împarţit-o la 6, iar din cât am scăzut 10, obţinând 56. Aflaţi numărul.

Rezolvare I.
Numărul din care am scăzut 10 este

56 + 10 = 66.

Numărul care împărţit la 6 dă 66 este

66×6= 396.

Numărul care adunat cu 16 dă 396 va fi

396 – 16 = 380.

Şi în sfârşit, numărul care înmulţit cu 10 dă 380 este

380 :10= 38.

Numărul căutat este 38.

Rezolvare II.

Redactarea rezolvării o puteam aranja şi astfel: notăm cu a numărul necunoscut şi obţinem:

( a x 10 + 16 ) : 6 – 10 = 56.

Calculele se ordonează astfel:

( a x 10 + 16 ) : 6 = 56 + 10
( a x 10 + 16 ) : 6 = 66
a x 10 + 16 = 66 x 6
a x 10 + 16 = 396
a x 10 = 396 – 16
a x 10 = 380
a = 380 : 10
a = 38

Proba sau verificarea rezultatului este următoarea: 38×10=380, apoi 380+16=396 şi 396:6= 66; în sfârşit, 66 -10 = 56, ceea ce corespunde enunţului.

Rezolvaţi, folosind aceeaşi metodă, problema:

Un număr se împarte la 7, din cât se scade 17, diferenţa se înmulţeşte cu 5, iar la produs se adună 15, obţinându-se astfel 20. Aflaţi numărul.


Important!
Nu posta probleme fără a mentiona în ce clasă esti si neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au impotmolit la rezolvare.
Mesajele care contin doar cerintele problemei vor fi ignorate.