axa numerelor 11-20

Numerația 11-20: consolidare

Lecțiile de matematică au devenit mai complicate când, dincolo de scrierea și citirea numerelor din concentrul 11-20, am trecut la exerciții mai complicate, de ordonare și comparare. Unul din jocurile de încălzire cu care încep lecțiile este acela de a ordona pe axă numerele. Materialul l-am pregătit la începutul anului, l-am plastifiat, i-am adăugat pe spate bucățele de magnet și le pot așeza ușor pe tablă. De obicei desenez axa, pun marcajele și apoi împart jetoanele copiilor care trebuie să numere să vadă unde așază, căutând întâi cine îl are pe cel mai mic. Mai am o variantă, care presupune pe sfoară și prins cu cleme, dar nu am apucat să o fac doar cu numerele până la 10.

axa numerelor 11-20

După ce le ordonăm, le citim în ordine crescătoare, apoi descrescătoare. Mutăm deasupra axei numerele pare (sau impare, nu contează, cât timp unele sunt deasupra, unele dedesubt) și le citim doar pe acestea, crescător și descrescător. Deja marea majoritate s-au obișnuit și le facem repede. Ultima dată am apucat să rezolvăm și exerciții de comparare a două numere, sau să stabilim vecinii unui număr, care e mai mare și care e mai mic.

Din păcate, cam aici ne-am oprit cu lecțiile. Pentru că pentru unii este încă dificil, am refăcut materialul de toamna trecută, l-am micșorat pentru a se putea utiliza mai ușor pe masă sau pe covor. Am scris numerele de la 0 la 20, le-am și reprezentat cu biluțe. Materialul disponibil aici se printează (preferabil pe carton sau se plastifiază) și se decupează, astfel încât să existe jetoane cu numere și jetoane cu mulțimi. Variante de joc:

  1. Se amestecă jetoanele cu numere, se cere copilului să le ordoneze crescător / descrescător.
  2. După așezarea numerelor, realizează corespodența între acestea și cartonașele cu mulțimi, prin numărarea elementelor.
  3. Se cere să aleagă numele pare/impare și să le ordoneze crescător / descrescător.
  4. Se extrage un număr și se cere copilului să găsească vecinii acestuia, să stabilească care e mai mare, care e mai mic.
  5. Se extrag două numere și se compară, care e mai mare, care e mai mic.
  6. Se caută numere mai mari decât x și mai mici decât y, în intervalul dat. Aici este de ajutor să se reașeze toate cartonașele în ordine crescătoare. Se mai pot cere numerele aflate între două numere date, sau de la un număr dat până la altul.

Fiecare variantă de joc se repetă până se observă că nu mai întâmpină dificultăți. După jumătate de oră de lucru, cel mult 45 minute, o pauză e binevenită. Se pot relua exercițiile care au mers mai greu, dar cele noi se lasă pentru ziua următoare.

Mai jos aveți o secvență de joc cu materialul de la clasă:

Mai multe variante de exerciții cu jetoanele confecționate aveți mai jos. Toate cele propuse pot fi realizate cu jetoanele de la 0 la 20, eu am optat pentru separarea celor două intervale din două motive simple. Primul, căci poate fi folosit separat cel cu numere până la 10, al doilea, ceva mai practic, nu îmi intra în cadru tot șirul de 21 de jetoane. Nu am inclus în video exercițiile de tipul „care sunt numerele mai mari decât … și mai mici decât…”, dar se pot realiza. Ca ultim sfat, repetați jocurile până când copilul nu mai întâmpină dificultăți.

Pentru numerele de la o la 10, aveți aici suportul video.

numeratie 11-20 jocuri

Numerația 11-20 – aplicații practice (CP)

Vacanța aceasta forțată a picat cum nu se putea mai neinspirat din punct de vedere al lecțiilor de matematică la clasa mea pregătitoare. Tocmai începusem numerația de la 11 la 20, apucasem să lucrez câteva ore cu copiii, speram ca săptămâna aceasta să pot trece la adunare dacă erau la un nivel satisfăcător, dar… n-a fost să fie. Cu mulți dintre ei merge bine, însă mai e mult până departe.

Am început să lucrez pentru acest concentru încă din primele zile de școală, de la înviorarea de dimineață, care se încheie cu o serie de genuflexiuni, câte zece, pe care le număram diferit: de la unu la 10, de la 11 la 20, de la 21 la 31 (ha, aici s-au prins unii repede că e una în plus!). Ca să nu ne plictisim, variam, de la 15 la 25 sau cum mai voiau ei. Ideea era să învățăm, ca pe poezie, cum se pronunță corect numeralele, să nu avem cinșpe, ci cincisprezece. Știu că e greu, și eu mă surprind uneori pe scurtătură, dar măcar ne străduim. Nu ne-a ieșit încă. Apoi a fost calendarul, în fiecare zi, și scrierea datei, chiar dacă prin imitație.

Toate bune și frumoase, până când ne-am apucat efectiv de treabă. Să grupezi zecile nu a fost chiar atât de simplu, iar eu voiam să „vadă zecea unită“. Am legat creioanele cu elastice, astfel încât zece creioane (care formau o zece) să stea ușor împreună. Am numărat mărgele, le-am pus câte 10 în cofraje, am înșirat câte 10 mărgele pe sârmă plușată și țineam în mână o zece, am pus jetoane cu magnet pe tablă pentru mulțimi, am scos rigletele și am format numere, am făcut mulțimi de câte 10 elemente pe hârtie. Sunt copii care au înțeles ușor, sunt destui care, cu insistențe, vor reuși, și sunt unii pentru care nu știu câte exerciții vor fi necesare, cât efort de concentrare, pentru că ei nu înțeleg de ce vin la școală și care sunt regulile aici.

Ce poți să faci să „înțelegi“ numerele până la 20 (asta în speranța că accepți faptul că a le recita ca pe poezie, corect, nu e același lucru cu înțelegerea conceptului):

  • îi dai copilului un număr de creioane (între 11 și 20), și îi ceri să formeze, prin numărare, mănunchiuri de câte 10. Câte mănunchiuri ai format? Câte creioane au rămas? Pentru a scrie numărul creioanelor, se notează întâi numărul de „mănunchiuri“ (adică numărul de zeci), apoi numărul de unități rămase. Se poate repeta cu orice tip de jucării sau obiecte mici, de la boabe de fasole la nasturi, piese lego. Important este ca o zece să fie izolată/încercuită, iar unitățile rămase în afară să fie cel mult 9, altfel se formează încă o zece.
  • pentru numerele identificate mai sus, se poate realiza corespondența cu riglette. „O zece“ există deja, este piesa cea mai lungă din set, se caută apoi piesa reprezentând numărul unităților dorite.
  • reprezentarea ordinelor pe numărătoarea pozițională este mai greu de explicat online. Eu le-am arătat copiilor prima dată cu bancnote. Am scos un mănunchi de bancnote de 1 leu, pe care ei le știu din viața de zi cu zi. Nimănui nu îi place să umble la el cu atâtea hârtii, să stai să numeri mereu câte ai. Așadar regula spune că pot schimba 10 hârtii verzi cu o hârtie roz. Ce valoare are o hârtie roz? Cât 10 hârtii verzi… Abia apoi am folosit numărătoarea pozițională. Dacă la unități am 10 bile, atunci am voie să le „schimb“ cu o bilă de la zeci. Am mers mult pe culori și 10 bile verzi fac cât o bilă roșie. Pe linia de la unități nu încap mai mult de 9, când se fac 10 – le transformăm. (Pentru că discurile de la numărătoarea pozițională sunt totuși mici, am improvizat una pe tablă, folosind discuri de carton cu magnet. Am lipit bandă izolieră colorată pentru suport, dar poză nu am făcut, din păcate. Seamănă însă cu cel folosind magneți de plastic, dar bulinele de carton au diametrul 7,5 cm.)

O activitate de acest gen, care să presupună multă joacă cu material concret, e mai utilă decât 20 de fișe de completat. Pentru exemplele fotografiate mai jos am lipit pe masă o folie de plastic (aceea folosită pentru a îmbrăca manualele) și scriu pe ea cu markere pentru tablă. Se șterge ok dacă insiști un pic și suplinește cu brio o tablă acasă. Dacă această variantă nu este posibilă, se poate plastifia un carton sau se poate folosi coală albă pe care se desenează mulțimile. La reutilizare, se plasează obiectele (10) în interiorul cercului desenat deja.

Pentru început am folosit buburuzele de lemn (cum spuneam, pot fi înlocuite cu orice obiecte), le-am grupat câte 10. Au rămas 3 în afara zecii. Corespondența am făcut-o cu riglette, o zece și trei unități. Apoi am folosit bețișoarele, am format o zece și trei unități. Am scris numărul 13, întâi cifra 1, reprezentând o zece – cifra zecilor – și apoi cifra 3, reprezentând unitățile – cifra unităților. Pentru a suplini numărătoarea pozițională, folosesc magneți (puteți folosi nasturi, buline decupate, biluțe din plastilină etc. sau se poate desena efectiv), un magnet roșu reprezintă o zece și este egală cu 10 unități (verzi). Același sistem l-am folosit și la clasele mai mari, am introdus albastrul pentru sute și apoi galben pentru mii. La clasa a patra, când am trecut la milion, nu mai era nevoie, reprezentam direct, fără a mai avea un cod de culori atât de strict.

Jocul se repetă pentru toate numerele, date pe sărite, nu consecutiv. Adultul care coordonează jocul este cel care dă copilului numărul de obiecte și urmărește corectitudinea rezolvării.

numeratie 11-20 jocuri

Dacă aveți și alte idei, completări sau întrebări, nu ezitați să le lansați mai jos, în comentarii.

Joacă la matematică

E așa amuzant să te joci la matematică, încât nu înțeleg de ce atunci când chiar te joci pare „suspect“. Și spun suspect pentru că și copiii se uită ciudat de vreo două săptămâni când le spun că „învățăm despre adunare/scădere“, iar fișele noastre sunt numai cu desene și nu cu calcule. Dar e greu… și de câte ori oftez îmi aduc aminte prima întrebare pe care mi-a pus-o instructorul la școala de șoferi: A mai încercat cineva să vă învețe? – Ce bine că nu, nu am nimic de reparat! Ei bine, cam așa cu operațiile aritmetice. Dacă pentru numerația de la 0 la 10 mai mult ne-am jucat cu mulțimi, ordonări și comparări, adunarea e cu totul altă poveste.

Dacă îi întrebi pe proaspeții absolvenți de grădiniță ce înseamnă să aduni, aș pune pariu că 9 din 10 spun „să pui plus“, iar ultimul stă pe gânduri. Așa că am început altfel… am dat drumul jos unui mănunchi de creioane și am rămas cu borcanul în mână. Le-am cerut să găsească ei ce pot spune eu unui coleg astfel încât după ce el mă aude și face ce-i cer, creioanele să ajungă din nou în borcanul lor. Dacă ați jucat mimă, știți cum fac participanții când simt că sunt aproape să ghicească, dar nu nimeresc cuvântul. Așa făceau și ei. Îndemnuri mai politicoase sau nu, porunci, de toate mi-au auzit urechile. Doar zâmbeam și clătinam din cap. Unul mai înfipt chiar mi-a comentat Doamna, știu, vreți să auziți un cuvânt anume!  Oo, da! Și până la urmă l-au nimerit: adună creioanele!

Evrika! Deci… să aduni înseamnă să strângi mai multe și să pui la un loc. Greu l-am scos. Dar apoi ne-am apucat de „adunat“: aduni jucăriile în coș, aduni gunoiul, creioanele, caietele, fișele, orice se putea aduna și pune grămadă, la un loc. Au urmat apoi exercițiile pe mulțimi. Număram elementele, adăugam 1, 2, 3, 4, 5 elemente (chiar dacă erau pinguini, o bulină era suficientă), apoi număram din nou și scriam câte sunt. Am adunat puncte pe piese de domino, am făcut noi mulțimi, am adăugat și  zero și-am văzut că nu se schimbă nimic. Am adunat creioane pe bancă, câte sunt într-o mână, câte sunt în cealaltă, apoi puse toate în mănunchi. Și am trecut la balanță. Pe mijlocul ei am putea scrie mare un semn de egal, căci scopul nostru e să o facem să stea în echilibru. Câte să pui într-o parte ca să fie tot atâtea ca în cealaltă? A mers bine, dar se poate și mai bine.

După un weekend prelungit de vacanță, o luăm de la capăt… „Când vrem să adunăm…” – „Punem plus!” Nu… când adunăm punem la un loc, avem mai puțin și facem mai mult, dacă avem două mere și adăugăm alte trei, avem în total cinci. Și nu le spun că rezultatul se numește sumă sau total, nici că avem termeni, dar asta nu înseamnă că nu putem pronunța obținem în total, să se obișnuiască.

Scăderea a pornit ceva mai bine. Am desenat o linie la nivelul apei dintr-o sticlă, apoi mi-am turnat în pahar și am marcat iar nivelul. Dacă am luat apă, ce s-a întâmplat cu apa din sticlă? – A scăzut, doamna! Mda, prea simplu, au nimerit din prima. Și am început să ne gândim: avem mai mult, luăm/dăm la o parte/mâncăm, rămânem cu mai puțin decât aveam. Am trecut la creioane/carioci, căci pe acestea le aveam la îndemână. De fapt, cariocile, căci pentru ce îmi pusesem în minte, aș fi rupt vârfurile creioanelor și nu am cum să le ascut. Pune 10 carioci pe masă. Acum dărâmă 3. Cu câte rămâi? 

Cine să mai numere?? Cum adică, avem voie să le trântim pe jos și chiar ne roagă doamna să o facem?? Păi nu ea ne certa când intenționat dădeam tot bolul pe jos, ca să avem ocazie de joacă pe sub bănci?

Ce a urmat… vreo 5 minute de distracție. Până când s-au plictisit totuși să le tot dea pe jos și au preferat varianta în care doar le dăm la o parte. Și după creioane – au venit mulțimile, iar numără elementele, iar taie 1/2/3/4/5 elemente, iar numără câte rămân și scrie câte sunt… Chin, nu alta, mai ales când te pune doamna să le mai numeri o dată, că ți-a scăpat un fulg/pinguin/focă sau ce animale mai are acolo, de unde le-o lua și pe-astea.

Cu balanța însă le place. La scădere n-am mai pus creioane, am pus capace. Și eu dădeam drumul la capace, ei făceau liniște și le numărau când loveau de plasticul pe fund. Câte trebuie să luăm dintr-un taler să rămână la fel ca în celălalt? Luam cât spuneau ei și, dacă era corect, balanța se echilibra (eventual și cu puțin ajutor).

Dar distracția a fost alta. Am decupat, eu vreo câteva ore, o bunică însoțitor altă oră, elemente pentru joacă. De dimineață le-am dus la școală gata plastifiate, numai bune de pus magnet pe ele și să ne jucăm. Și… s-au apucat să facă ordine pe tablă. Au strâns literele, căci nu era destul loc, mi-au sortat păsărelele după zburătoare sau nu , au făcut perechi brioșele, au hrănit păsărelele cu mere. Dar a venit ora. Am desenat o farfurie și am început să îi scot pe rând la tablă.

  • Pune 7 mere pe farfurie… lângă farfurie scria 7.
  • Următorul era invitat să „mănânce două mere“ – și s-a și prefăcut că le ronțăie înainte să le mute mai jos, dar de dragul gripei i-am rugat să nu pună gura pe ele. Apoi a completat, după 7, „- 2”, ceea ce însemna că a luat două.
  • Al treilea participant la joc număra câte au rămas pe farfurie și scria acest lucru „= 5”.

I-am rulat pe toți, am schimbat merele cu brioșe, iar la un moment dat am zis să trecem la păsărele… Doamna, pe farfurie? Le mâncăm?? Am șters farfuria și am făcut un gard, trebuiau „gonite” și scriam ca mai sus. Au început cu teatrul, „Uș-uș! Trei păsărele zboară!” Dacă e mai folositor jocul acesta decât să scrii coloane întregi de calcule… eu sunt sigură că da.  Dacă o să rețină că adunăm atunci când punem/umplem/aducem și că scădem când luăm/mâncăm/pleacă/zboară/se sparg, o să fie ok.

Și așa începe să placă matematica, când te joci suficient să prinzi drag de ea. Încercați și acasă, merge de minune cu mașinuțe pe covor, cu parcări desenate, cu păpuși, cu piese lego, cu tot ce doriți. Copilul va reține că v-ați jucat cu el, nu că a făcut matematică.

ceas cifre romane

De ce (mai) studiem cifrele romane?

Acum niște ani vorbeam aici, pe blog, de necesitatea corelării programelor școlare la diferite discipline pentru ca atunci când una apelează interdisciplinar cunoștințe necesare să nu se lovească de un obstacol de netrecut: copilul nu a „ajuns” acolo… Atunci pe mine mă interesa direct disciplina Istorie, la clasa a IV-a, unde, chiar din primele lecții copilul învăța despre secole și notarea lor cu cifre romane, fără să le fi învățat, în prealabil, la matematică.

Revizuirea programelor în urmă cu 7 ani a adus totuși și această licărire de speranță. Cifrele romane au fost introduse la clasa a III-a, cel puțin notațiile I, V, X  permiteau scrierea secolelor până la momentul prezent, celelalte studiindu-se în clasa a VI-a. Ce-i drept, cam atât s-a făcut, corelarea cu Geografia României nu se va întâmpla în acest secol… poate în următorul. Dar salut introducerea unei brume de geografie a continentelor la clasa a IV-a și să nu-i luăm ca din oală într-a cincea când începem istoria Orientului Antic.

Ca să încep cu începutul, până la urmă e impropriu să le spunem „cifre“ romane. Nu au fost atât de inventivi încât să conceapă alte semne care să desemneze numerele, în schimb au pus la punct un sistem ce pare extrem de sucit, comparativ cu cel arab folosit azi în mod curent. Așadar, ei au găsit un mod de a reprezenta numerele cu ajutorul literelor, în combinații foarte logice cu care „și-au făcut treaba“.

Trecând peste datoria față de moștenirea noastră culturală, nu rareori am întâlnit persoane indignate că trebuie să ne mai batem capul și cu acestea. Bine, acum dacă ne aducem aminte de glumele acelea ce încurajează rasismul și intoleranța, profitând de ignoranța unora ce se scandalizează că la școală se studiază cifrele arabe… parcă îți vine să mai stai un pic să te scarpini în cap și să te minunezi!

Până la urmă, de ce le învățăm? Simplu! Pentru că încă le mai folosim. Nu pe toate, doar câteva, iar modul romanilor de a scrie astfel numerele este, pentru copii, o curiozitate, pe care o explorează cu plăcere până la un anumit nivel, dacă avem grijă să nu le dăm prea mult să le facem silă. Iarăși, nu înțeleg de unde excesul de zel… de ce să faci mai mult decât spune programa? Cifrele romane sunt menționate în cadrul competenței 2.1: Recunoaşterea numerelor naturale din concentrul 0- 10 000 (respectiv 1 000 000 la clasa a IV-a), iar activitățile de învățare recomandate orientativ lămuresc că este vorba de formarea, scrierea şi citirea numerelor folosind cifrele romane și utilizarea cifrelor romane în situaţii uzuale (de exemplu, scrierea datei), la clasa a IV-a adăugându-se transcrierea cu cifre romane a unor numere scrise cu cifre arabe. Așadar, dacă știe ce semnifică I, V, X, iar mai apoi L, C, D, M, poate citi un număr și transcrie altul, să le folosească atunci când se lovește de ele, este mai mult decât suficient pentru clasele primare.

Care este scopul efectuării de calcule aritmetice scriind cu cifre romane? Șiruri de litere în care copiii se pierd, normal, și apoi… mai sunt și sancționați că „le-a dat greșit“. Încă nu uit cum mi-a sunat telefonul… Cristina, am nevoie să mă ajuți, nu mă descurc la adunări cu cifre romane! De ce?! Nu știu la ce folosește.  Referitor la utilizarea materialelor didactice la clasă, încă nu înțeleg la ce bun să expui, pe o planșă oarecare, înghesuite, toate numerele de la 1 la 100, cu scriere romană și corespondența arabă. La ce bun? Iar în cazul în care o planșă este o opțiune, ea nu trebuie să pomenească nici de numere, nici altă denumire derivată, fără legătură cu matematica, cum am auzit recent de „Numerale Romane“. Trebuie doar să le furnizeze copiilor informațiile esențiale (care este valoarea fiecărei „cifre“), căci modul lor de compunere ar trebui să le fie cunoscut.

Suzdal Kremlin clock

Ceas cu cifre chirilice. Suzdal Kremlin, 2005 | Author= User: Simm |Permission= Creative Commons Attribution Share-Alike 2.5

Însă cel mai greu de explicat – nu numai copiilor, dar și adulților – e că nu avem „numere romane“. Numerele erau aceleași, dacă vorbim de numerele naturale cel puțin. Când romanii numărau zece oi și scriau X, tot aceeași cantitate o vedeau și dacii, chiar dacă habar n-avem cum o notau. Și egiptenii aveau reprezentarea lor hieroglifică pentru numere, grecii una care nu m-a atras atât de mult încât să o aprofundez, din care s-a inspirat și scrierea chirilică… Mai toți care inventaseră în Antichitate și mai apoi un alfabet au găsit o soluție pentru a reprezenta și numerele pentru că, nu-i așa, toți aveau cinci degete la o mână cu care numărau câte oi și capre trebuie să dea pe o femeie. (Glumesc!)

Ideea e că numărul natural e un concept universal și m-aș hazarda să spun, în limbaj matematic (pe care unii l-au uitat, deși sigur l-au învățat la școală), că reprezintă cardinalul unei mulțimi finite de elemente. Cinci degete, cinci oi, cinci semințe, toate aceste mulțimi au același cardinal: cinci, indiferent că îl scrii arab, roman sau cine știe în ce bază de numerație. Romanii nu au inventat alte numere, tot pe cele naturale le-au scris și ei. Avem noroc cu arabii că au adus în Europa cifrele indiene și folosim acum sistemul zecimal, altfel sunt sigură că matematica ar fi pierdut numeroși adepți în școală, nu că acum ar avea prea mulți prieteni!

mini turbinca: joc cu numere

Jocuri matematice: cartonașe cu numere până la 100

O provocare a acestei toamne a fost să mă „joc” un pic pe tema matematicii cu un absolvent de clasa I. Și cum puștiul e argint viu și maestru în a se plictisi repede, am zis că nu are sens să folosesc o fișă clasică, așa că mi-am pregătit cartonașe de 5x5cm cu numerele până la 100. Materialul este micuț, poate fi folosit cu succes în activități individuale acasă sau pentru elevi la școală, tot individual sau în grupuri mici.

Am început prin a plastifia colile cu numere, pentru că nu am putut printa pe carton, să fie mai rezistente, iar coala normală era prea subțire. Din exces de zel am rotunjit și colțurile cât am căscat gura cu Iris la un serial, să nu se zgârie în ele. Le-am pus într-un săculeț și i-am spus „Mini-turbinca”, poate îi fac și chef de citit. Era mai interesant dacă le printam color, dar am doar imprimantă simplă acasă.

mini turbinca: joc cu numere

Pentru început se extrag șase numere (puteți cere oricâte, dar să nu fie nici prea multe, nici prea puține). Copilul trebuie să le citească pe fiecare, apoi trebuie să le așeze în ordine crescătoare/descrescătoare. După acest moment puteți face cam orice doriți:

  • să identifice numărul care are cifra zecilor cu X mai mare/mai mică decât a unui anumit număr din serie, pe care i-l indicați;
  • să identifice numerele care au suma cifrelor identică/au aceeași cifră a unităților sau aceeași a zecilor/cifra unităților identică cu cea a zecilor;
  • să afle cu cât este mai mic primul număr decât ultimul;
  • cu cât este mai mare penultimul față de al doilea;
  • să adune două dintre numere, la alegere (verificați repede dacă adunarea nu depășește suta);
  • să scadă două numere la alegere sau din cel mai mare pe toate celelalte (cinci operații diferite); puteți avea cartonașe albe, să scrie rezultatele obținute, să le așeze corespunzător și să observe că și acestea sunt în ordine, dar inversă față de cea folosită pentru așezarea numerelor la început;
  • dacă numerele sunt mici, să adune trei dintre ele (aceeași observație cu suta).

În felul acesta acoperiți cu un joc citirea, scrierea și ordonarea numerelor până la 100, dar și efectuarea operațiilor de adunare și scădere cu trecere peste ordin. Poate avea la îndemână orice material dorește pentru ajutor, însă vă recomand o tăbliță magnetică, aceea pe care desenează copiii mici și șterg imediat. Va avea senzația că scrie la tablă.

E drept că e un joc un pic mai greu pentru adulții neobișnuiți, dar cu puțină practică sunt sigură că vă veți descurca. Cu anumite limite, puteți să le folosiți pe cele până la 31 pentru copiii care trec clasa întâi, sau până la 10 (fără zero) pentru cei care abia intră la pregătitoare. În ultimul caz, trei cartonașe sunt suficiente la extragere.

Dacă aveți un copil foarte tehnic și dependent de telefon, îl puteți învăța cum să își verifice rezultatele obținute cu calculatorul. Așa poate descoperă și ei la ce poate fi folosită cu adevărat această unealtă de-o ținem mereu după noi. Dacă tot suntem aici, nu ar fi rău să îi căutați niște cărți de citit pe telefon, căci nu multora le-a trecut prin cap că telefonul poate fi și carte.

Fișierul pentru imprimarea planșelor va fi trimis în data de  2 octombrie 2019 abonaților la newsletterul Talente de Năzdrăvani (puteți să vă abonați aici). După această dată este disponibil doar la cerere celor care fac o donație către acest site prin PayPal sau cu cardul.

Mulțumesc pentru sprijin, pentru înțelegere și pentru respectul acordat muncii mele de-a lungul timpului.

numeratie_11-20

Numerația 11-20: planșe ilustrative

Cel mai dificil concentru de abordat la matematică mi se pare 11-20. Cred că aici e cheia înțelegerii sistemului zecimal de numerație și a trecerii peste ordin. Dacă aici le faci pe toate cum trebuie, mai târziu doar extinzi algoritmul. Până una alta, pentru ilustrarea seriei de numere am ales o formulă organizată și economică vizual, căci nu aveam de gând să mai pun pe pereți alte 10 planșe, după cele cu mulțimi. Și nici prin cap nu-mi trece să le pun pe toate, până la 31 sau apoi, în clasa întâi, până la 100… inutil și spațiu irosit degeaba.

Apoi, cred că în această formulă poți trece un pic mai departe la lucrul cu simboluri și niște buline sunt suficiente, mai ales că aduce un pic cu numărătoarea cu bile pe care fiecare o are.

Ca expunere, am evitat de această dată să desenez mulțimea. Am vrut să vadă, cât se poate de evident, corespondența dintre poziția ocupată de cifră, semnificația acesteia și numărul concret de unități. Am evitat, de asemenea, să folosesc pentru mărgele culorile cifrelor, căci dacă coloram 10 buline folosind culoarea zecilor, atunci erau 10 zeci, deci o unitate de ordin superior, o sută. Am grupat „o zece” (zece unități) într-un chenar roșu, care să corespundă numărului de zeci indicate, la care se adaugă unitățile rămase libere. De asemenea, l-am adăugat și pe 10, ca să se vadă „o zece” întreagă și zero unități. A fost mai greu cu 20, care e mai lat ca să respecte corespondența, însă le voi lipi una de alta în serie, la locul lor, și nu cred că vor fi probleme.

Cât ne vom opri la acest concentru vom folosi și bețișoarele, însă la cum văd că arată cele din comerț, de le pierzi printre degete, voi lucra cu creioane. Vreau ca în suportul de creioane individual să existe un set de 12 creioane colorate, plus alte instrumente – carioci, creioane simple, și cu siguranță se strâng până la 20 de obiecte. Am văzut și câteva seturi cu bețișoare de lemn, frumos colorate, chiar și cutie să le poți așeza, dar dacă nu au toți, tot degeaba. Creioanele vor fi perfecte.

Am lăsat colorate diferit cifrele pentru a marca cumva ceea ce reprezintă fiecare. „1” roșu este o zece, pentru că avem un singur grup de zece buline. Cifra albastră arată câte unități au rămas în afara chenarului. Când avem alte zece buline, putem constitui încă un grup, a doua „zece”, și atunci cifra zecilor se modifică, devine 2.

numeratie_11-20

Referitor la acest concentru, descompunerea numerelor va ocupa perioada cea mai lungă de exerciții și aici mă gândesc la unele variante. Cea mai „ieftină” este cu creionul pe hârtie, să desenezi liniuțe. Dar variante plăcute sunt cu elemente de lipit, cu altele de manevrat, cu mărgele de înșirat. (Toate însă depind de… Nu mai zic, că nu e plăcut.) Chiar dacă programa te limitează, la nivelul operațiilor, la o diferență de cel mult 5 unități, descompunerea numerelor trece, cu ajutorul materialului intuitiv, peste aceasta și va fi de mare ajutor ulterior, la operațiile cu trecere peste ordin.

Mi-aș dori foarte mult să am la clasă o numărătoare mare, din aceea cum aveam când eram copil. Țin minte că eram toți fascinați în pauză să plimbăm bilele, să le numărăm, să socotim, să le punem câte două, câte trei… din timpul orelor nu-mi mai amintesc decât că, dacă la tablă nu se descurca un coleg, trecea imediat la numărătoare să calculeze. Mă îndoiesc că vom primi de la primărie, deci rămâne pe lista dorințelor ne-urgente.

Copiii le vor avea pe ale lor, mici, probabil și eu la fel. Oricum, sper să arate ca cea din imaginea alăturată, mult mai ușor de folosit la calcule, căci are seriile colorate câte 5 și mai ales nu are fiecare zece colorată diferit, să te ia durerea de cap de la atâtea culori. Cele de lemn sunt frumoase, însă foarte scumpe, așa că voi căuta variante din plastic, mai ieftine. Ce va fi… vom vedea.

Materialul este disponibil celor care în ultimele patru luni au făcut o donație către acest site. Cei care au donat prin PayPal l-au primit deja la adresa de mail pe care au folosit-o pentru donație, dar și cei care au folosit cardul (există în partea de jos a formularului opțiunea de utilizare a cardului dacă nu ai cont de PayPal, unde sunt iconițele Visa si Mastercard) la adresa de mail menționată în tranzacție. Vă rog ca în momentul unei donații ulterioare datei publicării articolului să solicitați, printr-un comentariu, cu aceeași adresă de mail, materialul dorit.

Mulțumesc pentru sprijin, pentru înțelegere și pentru respectul acordat muncii mele de-a lungul timpului.

numeratie 0 31 100 joc didactic

0-31: numerație pentru pici (joc cu cartonașe)

Omul gospodar își face iarna car și vara sanie. După renovarea totală a școlii (care sincer sper să fie gata la 9 septembrie) și după ce Doreii de la zugrăveli au aruncat la grămadă tot ce-au găsit și li s-a părut lor că nu e important, voi începe școala într-o necunoaștere totală. Tot mobilierul a dispărut, înțeleg că încărcat în camioane și sper eu dus la școli mai puțin norocoase, nu pus pe foc. Ni s-a promis că vom avea mobilier nou. Nu știu cum arată și dacă, pe lângă bănci, avem și dulapuri, așa că nici nu pot să fac vreun plan cum îmi organizez clasa, dacă am cum (sau mai bine zis pe ce) să fac centre, dacă pot organiza copiii pe grupuri, dacă am tablă metalică sau de sticlă… Așa că, dacă din punct de vedere al organizării spațiului nu prea pot să mă gândesc la multe lucruri, lucrez la materialele ce-mi vor fi necesare. Trecerea de la a patra la clasa pregătitoare nu e chiar atât de simplă din punct de vedere logistic.

Colega mea îmi pusese frumos, de-o parte, diverse materiale utile, mai ales din cele de afișaj. Erau la gunoi, am salvat trei planșe cu cifre și vreo 10 cu litere… adică nimic, că trebuie să le fac pe toate din nou :(. Când (sau dacă…) îmi mai recuperez din cutii, o să mă simt ca la loz în plic, le desfac și văd ce-am nimerit, sau mai bine zis ce-am salvat! Că nu mai sunt toate știu deja.

Până una alta, am avansat la matematică. A fost amuzant că lucram pe calculator și Iris stătea lângă mine. O lămuresc că am nevoie de cartonașe pentru jocuri. Am ajuns la 31 și vede că mă opresc. De ce nu 30? Hmm… într-adevăr, concentrul 0-31 e mai mult decât ciudat. Logic este 0-10, apoi până la 20, 100, la 1 000, 10 000, 1 000 000.  Ei bine… 31 – pentru că o lună are maxim 31 de zile și dacă tot lucrează cu calendarul naturii în fiecare dimineață, măcar pe acestea să le știe. Dacă adăugăm și lunile anului, teoretic am putea măcar să scriem data. Fără an, că nu știu mititeii numerele cu patru cifre…

Pentru partea de numerație sper să stea binișor cu concentrul o-10, deși mersul la grădiniță e opțional și poate că nu au făcut cine știe ce.  Îmi plac laudele din seria „al meu numără până la 100” și piticul nu știe să lege șireturile, iar dacă îi ceri să îți pună pe masă 7 obiecte se uită la tine ca la mașini străine, căci așa străină îi este și lui asocierea număr-cantitate. Cel puțin are memorie bună, dacă le-a reținut pe toate, în ordine.

Dacă tot trebuia să fac cartonașele până la 10, le-am pregătit pe toate. Câteva idei pentru jocurile cu acestea:

  • citirea numerelor: puse într-un săculeț, fiecare copil extrage un cartonaș, citește numărul, sau se împart în mod egal cartonașele copiilor organizați pe grupe. Echipa care citește corect toate numerele câștigă.
  • amestec cartonașele, le împart copiilor cu sarcina de a le prinde pe ață la „uscat” în ordinea corectă. După un interval liniștit de mișcare browniană normal pentru orice joc, cartonașele vor fi agățate cu cleme pe ață. Încă mă gândesc dacă merg cârlige de rufe, de dragul jocului, sau să folosesc cleme metalice, care permit și să miști stânga-dreapta un cartonaș deja agățat. Bineînțeles că primii care vor prinde pe ață vor avea o sarcină mult prea simplă, așa că mă gândesc să împart celor care „termină” cartonașele rămase. Din fericire sunt doar 23 în clasă.
    Urmează etapa de verificare… dacă sunt prinse  în ordine corectă. Dacă un număr nu e la locul lui, îl mutăm. O altă problemă la care mă gândesc este capacitatea lor de coordonare, să strângă clema pentru deschidere și să o mențină suficient pentru a prinde. Exercițiul va fi util, însă va deveni ceva în plus față de cel de matematică. Așa că m-am gândit să perforez toate cartonașele în partea de sus (lămurind în felul acesta și modul de orientare al cifrelor 9 și 6) și să le prindem pe ață cu inele de plastic de la perdelele de duș sau cu agrafe de birou desfăcute.
  • odată prinse pe ață cu cleme, astfel încât să fie mobile, le pot folosi la numărat din doi în doi sau mai mult, grupându-le și lăsând un pic de spațiu între ele, astfel încât să devină totul mai vizual.
  • jocuri de comparare: se scot din săculeț două, trei sau mai multe numere și se așază pe ață în ordine, comparându-le două câte două, fie indivizual, fie pe grupe.

Dar până ajung eu la jocurile acestea, sunt cele cu mulțimi care îmi vor da suficientă bătaie de cap.

Am colorat diferit zecile și unitățile, ca să ajute la înțelegerea sistemului pozițional și apoi la jocurile de comparare a numerelor. Cred că o să rămân pe această combinație de culori până în clasa a doua.

numeratie 0 31 100 joc didactic

Chiar dacă mă opresc la 31, le-am făcut totuși până la 100, dar pentru anul viitor, la clasa I. Nu le afișez, mi se pare inutil să pun 100 de planșe pe perete (nu mai zic de variantele care aduc a insectar sau zoo cu decorațiuni), ci pentru jocuri. Fiecare primește, de exemplu, 5 cartonașe, pe care trebuie să le așeze crescător sau descrescător. Sau le împart pe toate grupurilor formate, să separe numele pare de cele impare; să identificăm zecile și să grupăm cartonașele după cum se rotunjesc la o anumită zece, posibilitățile sunt multe și mai bine așa decât să scrii pe fișe.
Nu știu dacă ar fi mai bine ca pentru aceste jocuri să pun pe spate magnet. Depinde dacă găsesc o sursă ieftină de magnet autocolant și mai ales dacă am tablă magnetică, deocamdată ceea ce am la îndemână e cam scump. Sau poate rămânem la joaca cu ele pe podea ori pe sfoară. Dacă… cine știe, o să mai avem covor și la clasa întâi.

Fișierul pentru imprimarea planșelor va fi trimis în data de  28 august 2019 abonaților la newsletterul Talente de Năzdrăvani (puteți să vă abonați aici). După această dată este disponibil doar la cerere celor care fac o donație către acest site prin PayPal sau cu cardul.

Este de preferat să îl printați pe carton sau să plastifiați foile. La un centru normal de print (dacă nu vă sunt la îndemână cele studențești), o coală printată color și laminată e în jur de 3 lei. Pentru clasa pregătitoare aveți 7 pagini, deci aproximativ 21 de lei jocul, pentru varianta cu 100, 26 de pagini (78 de lei). Dacă adăugați și magnet/agrafe, costul jocului crește.

Recomandări utile pentru producerea la clasă*:

Ca să citez un coleg, avem aparatul de laminat, de ce mă vait că e scump să le pregătesc? Foliile sunt ieftine, mă costă mai puțin dacă mi le iau, iar din restul nu o să sărăcesc.

* Recomandările sunt vizibile doar dacă Ad-Block este dezactivat pentru acest site.

Planșe cu mulțimi realizate manual pe concentrul 0-10

Numerația 0-10: planșe cu mulțimi

Dacă dai o căutare pe net cum să transformi pereții albi ai clasei în spațiu util învățării, planșele cu numere la clasa pregătitoare nu lipsesc de pe listă. Se găsesc foarte, foarte multe propuneri, care mai de care mai colorate, încărcate și izbitoare la ochi ori aruncătoare în derută (pentru copii, care nu mai știu la ce să se uite). Prima decizie pe care am luat-o acum mulți ani a fost să nu îmi botez clasa în niciun fel, iar acum o mențin, mai ales că voi avea unica pregătitoare din școală. Dar nu doar pentru aceasta, ci și pentru că am în clasă copii, nu albinuțe sau alte vietăți, și în consecință decorul va fi simplu, să transformi clasa într-o vitrină în care zeci de buburuze stau pe spate, pe burtă sau în cot, împovărate de vreo literă sau de vreo cifră, e prea mult pentru mine. Însă gusturile nu se discută, fiecare face cum crede până la urmă.

Am considerat mereu că atunci când te uiți la o planșă trebuie să vezi clar și exact ceea ce ea vrea să transmită și nimic altceva, căci la vârstele mici distractorii perceptivi sunt o problemă serioasă, mai ales când sunt mulți și colorați. Încerc, de asemenea, să țin minte că nu o poți lua înainte cu decorul dacă n-ai parcurs conținutul de învățare la care se referă, dar și că, dacă chiar vrei să aibă efect, trebuie să îl faci împreună cu copiii. E altceva când se uită pe perete și „știe” că a lipit și el o floricică acolo, să fie opt.

Pentru materialul de azi va fi ceva de muncă, iar pe perete va ajunge după ce îl realizează copiii. Mulțimile vor fi completate cu elemente de ei, pe care le vor realiza cu perforatorul din hârtie colorată și le vor lipi.

Planșe cu mulțimi realizate manual pe concentrul 0-10

În formatul de print apar doar numerele 0-10 și chenarul mulțimii. Elementele se confecționează separat și se lipesc.

Nu e singurul material la care îmi doresc să lucrez împreună cu copiii, mai ales pentru a-i da viață prin culoare. Acasă am doar imprimantă alb-negru, nu cred că școala va primi de la primărie, odată cu toate cele noi de după renovare, și o imprimantă color. În plus, se adaugă și faptul că tot citesc și pe net reacții ale părinților ce abia intră în școală, referitoare la ce anume trebuie să cumpere pentru a face dintr-o încăpere o sală de clasă și sincer nici nu știu ce să cer ca lucrurile să se miște măcar într-o direcție decentă.

Cu siguranță o să fac o listă de necesar la capitolul materiale didactice, care să fie înaintată „mai departe”. Dar la fel de sigură sunt și care va fi răspunsul la aceasta. Nu îmi convine nici să mă apuc, pe cheltuiala mea, să fac investiții aiurea, nu pot nici să nu fac nimic. Nu mi-a plăcut Bacovia, dar doar cu imprimanta mea o atmosferă cenușie riscă să iasă pe pereți (bine că au vopsit peretele din spatele clasei într-o culoare țipătoare, să compenseze!).

Anul trecut copiii mei erau mari, pentru tot ce a fost nevoie în clasă am printat contururile de litere și ei le-au colorat frumos. Anul acesta nu visez la asemenea ajutor. Dar noi să fim sănătoși, că nici când eram noi mici nu exista xerox și imprimantă, făceai carte și cu două caiete și-un manual. De atâta frică să nu fii acuzat că ai încălcat legea, suflăm excesiv în iaurt. Așa și cu banii de la școală. Mai bine stai cuminte în banca ta decât să te trezești cu cine știe ce reclamații că ai „cerut”.

Fișierul pentru imprimarea mulțimilor va fi trimis în data de 31 iulie 2019 abonaților la newsletterul Talente de Năzdrăvani (puteți să vă abonați aici). După această dată este disponibil doar la cerere (după ce vă abonați și adăugați un comentariu în acest sens cu adresa de mail folosită). Poate fi folosit atât la grădiniță, cât și la școală.

Pentru completarea mulțimilor folosiți forme decupate cu perforatoarele decorative din hârtie colorată. Cel puțin la pregătitoare (și la grădiniță), unde e musai ca elevul să aibă materialul individual cu care să lucreze, sunt sigură că uneltele acestea îmi vor economisi multe ore de muncă.

joc invatare tabla inmultirii

Cum să înveți tabla înmulțirii (când ești obligat)

Zilele trecute surprind o prietenă intrigată de faptul că doamna, pe lângă cantitatea de teme impresionantă (dacă făceau unitățile de măsură în clasa I și știa ce e tona, sigur asta spunea copilul), a cerut să fie învățată și tabla înmulțirii. A glumit sau nu doamna? Vom afla curând. Însă nu înțeleg, pe cuvânt că nu înțeleg!

Mie mi-a plăcut matematica, pe principiul că îți plac lucrurile pe care le înțelegi. Și asta nu pentru că tata e profesor de matematică, ci pentru că mi-am permis luxul de a avea pe cine să întreb ori de câte ori nu înțelegeam ceva, fără să-mi fie o secundă teamă că urmează să se scrie ceva în catalog. Când am hotărât să-mi iau pregătirea de la capăt, ca profesor pentru învățământul primar, au fost și destule lucruri care mi-au lansat noi provocări. Însă lecția de metodică privitoare la modul de predare al tablei înmulțirii a fost un moment în care mintea mea a făcut un click, în contact cu altceva. N-o să detaliez aici, colegii de breaslă știu despre ce e vorba, iar părinții – ei bine, trebuie să lase acest lucru în seama celor care știu ce au de făcut!

În schimb, ori din proprie inițiativă, ori din motivul descris în primul paragraf, te trezești tu, ca părinte, că trebuie să transformi omulețul ăla mic, ce se scaldă în zilele de vacanță, într-un mic memorator al tablei înmulțirii. Doar s-a cerut, nu? Iar dacă începi ca papagalul, cu unu ori unu – unu, copilul va învăța în cele din urmă… dar doamne ferește să uite vreo „virgulă”. Ca să nu zici totuși că n-ai făcut nimic și să îți ajuți cu adevărat copilul, poți să numeri cu el, întâi ca adunare repetată.

2+2? 4! Și cu încă 2? (4+2=) 6! Și cu încă doi? (6+2=) 8! Nu faci teorie de adunare repetată, doar te joci. La început îi spui ce vrei să facă, să adauge două unități la numărul obținut. Dar apoi, ceea ce am pus între paranteze trebuie să se petreacă doar în mintea copilului. Jocul trebuie să piardă și intervenția părintelui, care marca adăugarea, astfel încât la final copilul să poată număra singur… 2, 4, 6, 8, 10… După ce seria cu 2 este terminată, trecem la următoarea. Nu, nu e 3. Ordinea în care ar trebui învățate este 2, 5, 10, 3, 6, 9, 4, 7, 8.

Dacă copilului îi plac jocurile, poți să-i imprimi șirurile de numere și să inventezi orice poveste. Le pui pe jos, cu frunze, pui o broască să sară după regulă, le faci flori, pui șirul pe perete și orice pluș-insectă „să zboare”, ghidat de copil. Pe fiecare șir, poate colora floarea potrivită. De exemplu, avem flori de la 0 la 20. Colorăm din doi în doi, adică una colorată, una necolorată. Apoi alt șir, de alte minuni, pentru fiecare serie. Dacă vă distrați la bunici în vacanță, lipiți-le pe gard, jucați-vă cu copiii de pe uliță.

Iar dacă la finalul vacanței știe să reproducă corect șirurile, atunci e mai mult decât ceea ce aveați de făcut. Restul – de aceea merge la școală!

Am încercat să confecționez un material (click aici) pe care sper să-l puteți folosi acasă. Vă recomand să le imprimați cu negru pe alb, ca să existe un bun contrast al elementelor colorate de copii. Printează șirul de numere în funcție de seria care se dorește exersată – până la 30 pentru 3, până la 50 pentru 5 ș.a.m.d. Taie paginile pe liniile punctate, apoi potrivește și lipește benzile de hârtie la capete astfel încât să obții un șir crescător, cu aproximativ aceeași distanță între numere. Banda obținută o poți întinde prin casă sau pe un perete, de jur-împrejurul camerei. Lasă copilul să coloreze sau decoreze numerele în funcție de seria pe care o exersați sau jocul pe care l-ați inventat, poate face acest lucru în faza de adunare repetată a jocului, așa va „fura” un pic de timp de gândire pentru a efectua adunarea. Poate, eventual, să facă doar un mic semn și să decoreze ulterior. Cert e că o serie, deja pe perete, colorată, se va exersa mai ușor.

Bineînțeles că, dacă nu aveți o imprimantă la îndemână, nu înseamnă că nu puteți confecționa jocul. Luați o coală mare albă, ca cele de împachetat de la librărie. Rulați-o și tăiați apoi benzi de cca 5 cm lățime. Lipiți-le între ele și scrieți, cu un marker, numerele. Pentru copii nu va conta cum arată, pentru ei va fi important cu ce le vor decora!

Dacă folosiți acest joc la școală, cu clase mai mici, îi puteți lăsa pe ei să decupeze și apoi să lipească segmentele în ordine. Va fi și un puzzle de rezolvat, înainte de ceea ce v-ați propus. Pereții clasei, dacă nu – holul școlii, în partea de jos, vă oferă spațiul necesar pentru joacă (atunci când timpul există).

joc invatare tabla inmultirii

Sper să-mi povestiți cum a funcționat!

Probleme care se rezolvă prin metoda figurativă (II)

Se împlinesc mai bine de 7 ani de când am adăugat pe blog primele articole despre metodele de rezolvare a problemelor de matematică. Atunci, la început de ciclu primar al lui Andrei, eram încă în rolul de părinte disperat și de rubrică s-a ocupat în mare măsură tatăl meu. Se ocupă și în continuare, căci copiii caută pe net, adaugă probleme, iar articolele la care am colaborat cu el au un număr impresionant de comentarii de-a lungul timpului. Odată cu a doua mea specializare, am preluat în parte scrierea articolelor, iar zilele trecute l-am refăcut un pic pe primul, cel dedicat metodei figurative, pentru a-l putea recomanda câtorva părinți care se străduiesc să își susțină copilul acasă, dar (mi se pare normal, că doar nu au studii de specialitate) nu prea știu cum.

Cu această ocazie am constatat că articolul nu includea explicația unei probleme atunci când datele cunoscute includ diferența și raportul dintre necunoscutele problemei. Se dă, așadar, următoarea problemă:

Ana are într-un coș de răchită mere galbene și roșii. Numărul merelor galbene este de 4 ori mai mare decât al merelor roșii, iar diferența este 24. Câte mere galbene are Ana? Dar mere roșii? Rezolvați folosind metoda figurativă.

Primul pas ce trebuie făcut este analiza datelor problemei. Experiența îmi arată că copiii  nu citesc cu atenție cerințele și în loc de a rumega datele, îl iau pe „nu știu” în brațe, aleargă la prima persoană adultă care, cum altfel, de multe ori îi scutește de treabă, și se amăgește cu răspunsul copilului că „a înțeles”.

Ne sunt utile toate informațiile din problemă?

Nu. Nu ne interesează că merele sunt în coș, sau că e coșul din răchită. Este o informație inutilă în rezolvarea acesteia.

Ce informații ne oferă problema?

  1. Avem două necunoscute, mere galbene (g) și mere roșii (r).
  2. Știm că mere galbene sunt mai multe decât mere roșii.
  3. Cunoaștem diferența între numărul merelor galbene și roșii.

Care sunt cuvintele cheie ale problemei?

  1. „de 4 ori mai mare”, ceea ce înseamnă o operație de înmulțire: 4 x r = g
  2. „diferența este 24”, ceea ce înseamnă o operație de scădere: g – r = 24

Dacă copilul ajunge la aceste expresii matematice, este tentat să continue rezolvarea fără să apeleze la metoda figurativă. Însă avem o cerință în acest sens…

Vom începe cu realizarea desenului. Avem două necunoscute, mere galbene și roșii, așadar desenul nostru va cuprinde două segmente, unul mai mic și unul mai mare, căci nu avem același număr de mere de culori diferite.

Am stabilit că merele roșii sunt cele mai puține, așadar primul segment, mai mic, va reprezenta merele roșii. Al doilea segment, mai mare – merele galbene. De câte ori va fi mai mare al doilea segment? De 4 ori. Așadar desenăm al doilea segment având lungimea de 4 ori mai mare decât a primului. Recomand ca aceste rezolvări, cel puțin la început, să fie realizate pe foi cu pătrățele. Desenăm primul segment de 3 pătrățele, al doilea va avea: 3 x4 =  12 (pătrățele). Însă dacă vă doriți ca copilul să participe la concursuri de excelență, învățați-l să lucreze pe foaie velină. Desenezi cu rigla un segment de 2 cm. Următorul va avea 2 x 4 = 8 cm.

În construcție se poate proceda la desenarea celui de-al doilea segment multiplicându-l pe primul. Se desenează dedesubt, pornind dintr-un punct aliniat cu primul, un segment identic, apoi se continuă adăugarea a încă trei segmente de aceeași dimensiune, rezultând un segment de patru ori mai mare decât primul (alcătuit din patru părți de dimensiunea primului).

Din problemă cunoaștem „diferența”. Dacă comparăm cele două segmente desenate, care este „diferența” între ele? Ce are în plus al doilea față de primul? Sau – dacă din al doilea îl scădem / dăm la o parte pe primul, cu ce rămânem? Am constatat că aici au existat dificultăți mari în înțelegere, însă sunt convinsă că, lucrând la clasele mai mici cu material concret în învățarea operațiilor matematice, aceste dificultăți pot fi reduse.

Revenind la analiza desenului: din câte părți egale este format al doilea segment, care reprezintă merele galbene? Din 4 părți egale, căci este de patru ori mai mare decât primul segment. Câte din aceste părți egale reprezintă ce are „în plus” față de primul, sau „diferența” dintre acesta și primul? 3 părți egale.

Dacă trei părți egale reprezintă 24, cât este o parte?

24 :  3 =  8 (o parte egală, în problema noastră: numărul merelor roșii)

Câte mere galbene avem?

8 x 4 = 32 (mere galbene), dacă folosim informația potrivit căreia sunt „de patru ori mai multe”,

sau: 8 + 24 = 32 (mere galbene), dacă ne folosim de diferența dintre ele.

La răspuns notăm R: 32, 8., răspunzând, în ordinea în care au fost puse, la întrebările problemei.

Nu uităm de verificare. La această etapă trebuie să folosim datele obținute ca răspuns pentru a ajunge la datele problemei. Nu vom efectua așadar 32+8=40, pentru că problema nu ne spune câte mere sunt în total. Avem ca alternativă 32-8=24 (verificăm diferența), sau 32 : 8 = 4.

Tatăl meu încheia articolele cu o temă, însă sunt convinsă că ați ajuns la acest articol căutând ajutor pe google pentru o anumită problemă din multitudinea de culegeri pe care le avem. Dacă aveți în continuare nevoie de ajutor în rezolvare, vă rog să țineți cont și de mesajul de mai jos:

Important!
Nu adăuga probleme fără a menționa în ce clasă ești(este copilul) și neaparat cum te-ai gândit tu să rezolvi problema. Nu rezolvăm aici temele elevilor, doar îi ajutăm în cazul în care s-au împotmolit la rezolvare.
Mesajele care conțin doar cerințele problemei vor fi (probabil) ignorate.

Pentru alte tipuri de probleme, accesează secțiunea de „Matematică”.